- 1. 9709/32/F/M/18 Q3
- (i) Using the expansions of cos(3x + x) and cos(3x x), show that

$$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$$
 [3]

2. 9709/31/M/J/18 Q2

(i) Given that $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, find the exact value of $\tan x$. [4]

(ii) Hence solve the equation $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, for $0^\circ < x < 360^\circ$. [2]

3. 9709/32/M/J/18 Q2

Showing all necessary working, solve the equation $\cot \theta + \cot(\theta + 45^\circ) = 2$, for $0^\circ < \theta < 180^\circ$. [5]

4. 9709/32/M/J/18 Q4

(i) Show that
$$\frac{2\sin x - \sin 2x}{1 - \cos 2x} \equiv \frac{\sin x}{1 + \cos x}.$$
 [4]

5. 9709/33/M/J/18 Q5

(i) By first expanding $(\cos^2 x + \sin^2 x)^3$, or otherwise, show that

$$\cos^6 x + \sin^6 x = 1 - \frac{3}{4}\sin^2 2x.$$
 [4]

(ii) Hence solve the equation

$$\cos^6 x + \sin^6 x = \frac{2}{3},$$

for
$$0^{\circ} < x < 180^{\circ}$$
. [4]

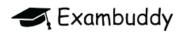
6. 9709/33/M/J/18 Q7

(i) Express $\cos \theta + 2 \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the exact values of R and $\tan \alpha$.

7. 9709/31/0/N/18 Q6

(i) Show that the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$ can be expressed in the form $R \sin(x - \alpha) = \sqrt{2}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.

(ii) Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$. [4]



8. 9709/32/0/N/18 Q2

Showing all necessary working, solve the equation $\sin(\theta - 30^\circ) + \cos\theta = 2\sin\theta$, for $0^\circ < \theta < 180^\circ$.

9. 9709/33/0/N/18 Q6

- (i) Show that the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$ can be expressed in the form $R \sin(x \alpha) = \sqrt{2}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
 - (ii) Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$. [4]

10. 9709/32/F/M/19 Q3

- (i) Given that $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$, find the exact value of $\tan\theta$ in a form involving surds. You need not simplify your answer. [4]
- (ii) Hence solve the equation $\sin(\theta + 45^\circ) + 2\cos(\theta + 60^\circ) = 3\cos\theta$ for $0^\circ < \theta < 360^\circ$. [2]

11. 9709/31/M/J/19 Q4

By first expressing the equation $\cot \theta - \cot(\theta + 45^{\circ}) = 3$ as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 180^{\circ}$. [6]

12. 9709/31/M/J/19 Q6

(i) By first expanding $\sin(2x + x)$, show that $\sin 3x = 3\sin x - 4\sin^3 x$. [4]

13. 9709/32/M/J/19 Q3

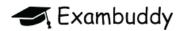
Showing all necessary working, solve the equation $\cot 2\theta = 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$.

[5]

14. 9709/33/M/J/19 Q3

Let
$$f(\theta) = \frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta}$$
.

(i) Show that
$$f(\theta) = \tan \theta$$
. [3]



15. 9709/31/0/N/19 Q9

(i) By first expanding
$$cos(2x + x)$$
, show that $cos 3x = 4 cos^3 x - 3 cos x$. [4]

(ii) Hence solve the equation
$$\cos 3x + 3\cos x + 1 = 0$$
, for $0 \le x \le \pi$. [2]

16. 9709/32/0/N/19 Q4

- (i) Express $(\sqrt{6}) \sin x + \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 3 decimal places. [3]
- (ii) Hence solve the equation $(\sqrt{6}) \sin 2\theta + \cos 2\theta = 2$, for $0^{\circ} < \theta < 180^{\circ}$. [4]

17. 9709/33/0/N/19 Q4

- (i) By first expanding $\tan(2x + x)$, show that the equation $\tan 3x = 3 \cot x$ can be written in the form $\tan^4 x 12 \tan^2 x + 3 = 0$. [4]
- (ii) Hence solve the equation $\tan 3x = 3 \cot x$ for $0^{\circ} < x < 90^{\circ}$. [3]

18. 9709/32/F/M/20 Q5

(a) Show that
$$\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 2 \cot 2x$$
. [4]

(b) Hence solve the equation
$$\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 4$$
, for $0 < x < \pi$. [3]

19. 9709/31/M/J/20 Q3

Express the equation $\tan(\theta + 60^\circ) = 2 + \tan(60^\circ - \theta)$ as a quadratic equation in $\tan \theta$, and hence solve the equation for $0^\circ \le \theta \le 180^\circ$. [6]

20. 9709/31/M/J/20 Q7

Let
$$f(x) = \frac{\cos x}{1 + \sin x}$$
.

(a) Show that
$$f'(x) < 0$$
 for all x in the interval $-\frac{1}{2}\pi < x < \frac{3}{2}\pi$. [4]

21. 9709/32/M/J/20 Q4

A curve has equation $y = \cos x \sin 2x$.

Find the *x*-coordinate of the stationary point in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6]

22. 9709/32/M/J/20 Q5

- (a) Express $\sqrt{2}\cos x \sqrt{5}\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 3 decimal places. [3]
- **(b)** Hence solve the equation $\sqrt{2}\cos 2\theta \sqrt{5}\sin 2\theta = 1$, for $0^{\circ} < \theta < 180^{\circ}$. [4]

23. 9709/33/M/J/20 Q5

By first expressing the equation

$$\tan \theta \tan(\theta + 45^\circ) = 2 \cot 2\theta$$

[6]

as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.

24. 9709/31/0/N/20 Q6

- (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- (b) Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$. [4]

25. 9709/32/0/N/20 Q4

(a) Show that the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$ can be written in the form

$$\tan^2 \theta + 3\sqrt{3} \tan \theta - 2 = 0.$$
 [3]

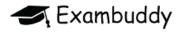
(b) Hence solve the equation $\tan(\theta + 60^\circ) = 2 \cot \theta$, for $0^\circ < \theta < 180^\circ$. [3]

26. 9709/33/0/N/20 Q6

- (a) Express $\sqrt{6}\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- **(b)** Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$. [4]

27. 9709/32/F/M/21 Q3

By first expressing the equation $\tan(x + 45^\circ) = 2 \cot x + 1$ as a quadratic equation in $\tan x$, solve the equation for $0^\circ < x < 180^\circ$. [6]



28. 9709/32/F/M/21 Q5

- (a) Express $\sqrt{7} \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- **(b)** Hence solve the equation $\sqrt{7} \sin 2\theta + 2 \cos 2\theta = 1$, for $0^{\circ} < \theta < 180^{\circ}$. [5]

29. 9709/31/M/J/21 Q3

(a) Given that
$$\cos(x - 30^\circ) = 2\sin(x + 30^\circ)$$
, show that $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$. [4]

(b) Hence solve the equation

$$\cos(x-30^\circ) = 2\sin(x+30^\circ),$$

for
$$0^{\circ} < x < 360^{\circ}$$
. [2]

30. 9709/31/M/J/21 Q4

5

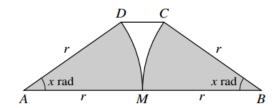
(a) Prove that
$$\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$$
. [2]

31. 9709/32/M/J/21 Q6

(a) Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$.

[3]

32. 9709/32/M/J/21 Q10



The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

- (a) Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x = 0.9(2 \cos x) \sin x$. [3]
- **(b)** Verify by calculation that *x* lies between 0.5 and 0.7. [2]

33. 9709/33/M/J/21 Q5

- (a) By first expanding $\tan(2\theta + 2\theta)$, show that the equation $\tan 4\theta = \frac{1}{2} \tan \theta$ may be expressed as $\tan^4 \theta + 2 \tan^2 \theta 7 = 0$. [4]
 - **(b)** Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$. [3]

34. 9709/31/0/N/21 Q2

- (a) Express $5 \sin x 3 \cos x$ in the form $R \sin(x \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the exact value of R and give α correct to 2 decimal places. [3]
- (b) Hence state the greatest and least possible values of $(5 \sin x 3 \cos x)^2$. [2]

35. 9709/31/0/N/21 Q5

(a) Show that the equation

$$\cot 2\theta + \cot \theta = 2$$

can be expressed as a quadratic equation in $\tan \theta$.

[3]

b) Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places. [3]

36. 9709/32/0/N/21 Q6

(a) Using the expansions of $\sin(3x + 2x)$ and $\sin(3x - 2x)$, show that

$$\frac{1}{2}(\sin 5x + \sin x) \equiv \sin 3x \cos 2x.$$
 [3]

37. 9709/32/0/N/21 Q8

(a) By first expanding $(\cos^2 \theta + \sin^2 \theta)^2$, show that

$$\cos^4 \theta + \sin^4 \theta \equiv 1 - \frac{1}{2} \sin^2 2\theta.$$
 [3]

(b) Hence solve the equation

$$\cos^4\theta + \sin^4\theta = \frac{5}{9},$$

for
$$0^{\circ} < \theta < 180^{\circ}$$
. [4]

38. 9709/33/0/N/21 Q5

Solve the equation $\sin \theta = 3\cos 2\theta + 2$, for $0^{\circ} \le \theta \le 360^{\circ}$.

39. 9709/33/0/N/21 Q6

(a) By first expanding $\cos(x - 60^\circ)$, show that the expression

$$2\cos(x-60^\circ)+\cos x$$

- can be written in the form $R \cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [5]
- (b) Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x 60^{\circ}) + \cos x$ takes its least possible value. [2]

40. 9709/32/F/M/22 Q5

The angles α and β lie between 0° and 180° and are such that

$$tan(\alpha + \beta) = 2$$
 and $tan \alpha = 3 tan \beta$.

Find the possible values of α and β .

[6]

41. 9709/31/M/J/22 Q3

Solve the equation $2 \cot 2x + 3 \cot x = 5$, for $0^{\circ} < x < 180^{\circ}$.

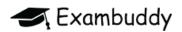
[6]

42. 9709/32/M/J/22 Q3

Solve the equation $3\cos 2\theta = 3\cos \theta + 2$, for $0^{\circ} \le \theta \le 360^{\circ}$.

43. 9709/33/M/J/22 Q2

Solve the equation $\cos(\theta - 60^{\circ}) = 3 \sin \theta$, for $0^{\circ} \le \theta \le 360^{\circ}$.



44. 9709/31/0/N/22 Q4

Solve the equation $tan(x + 45^\circ) = 2 \cot x$ for $0^\circ < x < 180^\circ$.

45. 9709/31/0/N/22 Q6

(a) Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$. [4]

(b) Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$ for $0^{\circ} \le \theta \le 180^{\circ}$. [3]

46. 9709/32/0/N/22 Q3

The equation of a curve is $y = \sin x \sin 2x$. The curve has a stationary point in the interval $0 < x < \frac{1}{2}\pi$.

Find the *x*-coordinate of this point, giving your answer correct to 3 significant figures. [6]

47. 9709/32/0/N/22 Q4

- (a) Express $4\cos x \sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. [3]
- (b) Hence solve the equation $4\cos 2x \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$. [5]

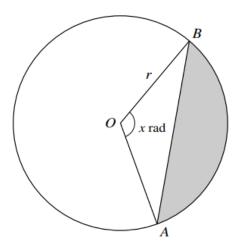
48. 9709/33/0/N/22 Q7

- (a) Show that the equation $\sqrt{5} \sec x + \tan x = 4$ can be expressed as $R \cos(x + \alpha) = \sqrt{5}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [4]
- (b) Hence solve the equation $\sqrt{5} \sec 2x + \tan 2x = 4$, for $0^{\circ} < x < 180^{\circ}$. [4]

49. 9709/32/F/M/23 Q6

- (a) Express $5 \sin \theta + 12 \cos \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. [3]
- (b) Hence solve the equation $5 \sin 2x + 12 \cos 2x = 6$ for $0 \le x \le \pi$. [4]

50. 9709/32/F/M/23 Q7



The diagram shows a circle with centre O and radius r. The angle of the **minor** sector AOB of the circle is x radians. The area of the **major** sector of the circle is 3 times the area of the shaded region.

(a) Show that
$$x = \frac{3}{4}\sin x + \frac{1}{2}\pi$$
. [4]

(b) Show by calculation that the root of the equation in (a) lies between 2 and 2.5. [2]

51. 9709/31/M/J/23 Q4

(a) Show that the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ can be expressed in the form

$$\cos^2 \theta + 2\sin \theta \cos \theta - 3\sin^2 \theta = 0.$$
 [2]

(b) Hence solve the equation
$$\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$$
 for $0^\circ < \theta < 180^\circ$. [4]

52. 9709/32/M/J/23 Q4

Solve the equation
$$2\cos x - \cos \frac{1}{2}x = 1$$
 for $0 \le x \le 2\pi$.

53. 9709/32/M/J/23 Q6

The equation $\cot \frac{1}{2}x = 3x$ has one root in the interval $0 < x < \pi$, denoted by α .

(a) Show by calculation that α lies between 0.5 and 1.

[2]

54. 9709/33/M/J/23 Q6

- (a) Express $3\cos x + 2\cos(x 60^\circ)$ in the form $R\cos(x \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. State the exact value of R and give α correct to 2 decimal places. [4]
- (b) Hence solve the equation

$$3\cos 2\theta + 2\cos(2\theta - 60^\circ) = 2.5$$

for
$$0^{\circ} < \theta < 180^{\circ}$$
. [4]

55. 9709/31/0/N/23 Q5

(a) Given that

$$\sin\left(x + \frac{1}{6}\pi\right) - \sin\left(x - \frac{1}{6}\pi\right) = \cos\left(x + \frac{1}{3}\pi\right) - \cos\left(x - \frac{1}{3}\pi\right),$$
 find the exact value of tan x. [4]

(b) Hence find the exact roots of the equation

$$\sin\left(x + \frac{1}{6}\pi\right) - \sin\left(x - \frac{1}{6}\pi\right) = \cos\left(x + \frac{1}{3}\pi\right) - \cos\left(x - \frac{1}{3}\pi\right)$$
 for $0 \le x \le 2\pi$.

56. 9709/32/0/N/23 Q7

(a) By expressing
$$3\theta$$
 as $2\theta + \theta$, prove the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. [3]

(b) Hence solve the equation

$$\cos 3\theta + \cos \theta \cos 2\theta = \cos^2 \theta$$

for
$$0^{\circ} \le \theta \le 180^{\circ}$$
. [5]

57. 9709/33/0/N/23 Q6

(a) Show that the equation $\cot^2 \theta + 2\cos 2\theta = 4$ can be written in the form

$$4\sin^4\theta + 3\sin^2\theta - 1 = 0.$$
 [3]

(b) Hence solve the equation
$$\cot^2 \theta + 2\cos 2\theta = 4$$
, for $0^\circ < \theta < 360^\circ$. [3]

58. 9709/32/F/M/24 Q8

(a) Express $3\sin x + 2\sqrt{2}\cos\left(x + \frac{1}{4}\pi\right)$ in the form $R\sin(x + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. State the exact value of R and give α correct to 3 decimal places. [4]

(b) Hence solve the equation

$$6\sin\frac{1}{2}\theta + 4\sqrt{2}\cos\left(\frac{1}{2}\theta + \frac{1}{4}\pi\right) = 3$$

for
$$-4\pi < \theta < 4\pi$$
. [5]