1. 9709/32/F/M/18 Q3

Question	Answer	Marks
3(i)	State correct expansion of $\cos(3x+x)$ or $\cos(3x-x)$	B1
	Substitute in $\frac{1}{2}(\cos 4x + \cos 2x)$	M1
	Obtain the given identity correctly AG	A1
		3

2. 9709/31/M/J/18 Q2

Question	Answer	Marks
2(i)	Use trig formulae and obtain an equation in $\sin x$ and $\cos x$	M1*
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for tan x	M1(dep*)
	Obtain answer $\tan x = \frac{-\left(6 + \sqrt{6}\right)}{\left(6 - \sqrt{2}\right)}$ or equivalent	A1
		4
2(ii)	State answer, e.g. 118.5°	B1
	State second answer, e.g. 298.5°	B1ft
		2

3. 9709/32/M/J/18 Q2

Question	Answer	Marks	Guidance
2	Use correct tan $(A \pm B)$ formula and obtain an equation in tan θ	M1	$\frac{1}{\tan \theta} + \frac{1 - \tan \theta \tan 45}{\tan \theta + \tan 45} = 2 \text{ Allow M1 with } \tan 45^{\circ}$ $= \frac{1}{\tan \theta} + \frac{1 - \tan \theta}{\tan \theta + 1}$
	Obtain a correct equation in any form	A1	With values substituted
	Reduce to $3\tan^2\theta = 1$, or equivalent	A1	
	Obtain answer $x = 30^{\circ}$	A1	One correct solution
	Obtain answer $x = 150^{\circ}$	A1	Second correct solution and no others in range
	OR: use correct $\sin(A \pm B)$ and $\cos(A \pm B)$ to form equation in $\sin \theta$ and $\cos \theta$ M1A1		
	Reduce to $\tan^2 \theta = \frac{1}{3}$, $\sin^2 \theta = \frac{1}{4}$, $\cos^2 \theta = \frac{3}{4}$ or $\cot^2 \theta = 3$ A1 etc.		
		5	

4. 9709/32/M/J/18 Q4

Question	Answer	Marks	Guidance
4(i)	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	M1	$\frac{2\sin x - 2\sin x \cos x}{1 - \left(2\cos^2 x - 1\right)}$
	Obtain a correct expression	A1	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1 - \cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	A1	
	$\frac{\sin x}{1 + \cos x} \times \frac{1 - \cos x}{1 - \cos x} = \frac{\sin x - \sin x \cos x}{1 - \cos^2 x}$ $= \frac{2\sin x - 2\sin x \cos x}{2 - 2\cos^2 x}$ M1A1		Given answer so check working carefully
	$= \frac{2\sin x - \sin 2x}{1 - \cos 2x} $ M1A1		
		4	

5. 9709/33/M/J/18 Q5

Question	Answer	Marks
5(i)	Attempt cubic expansion and equate to 1	M1
	Obtain a correct equation	A1
	Use Pythagoras and double angle formula in the expansion	M1
	Obtain the given result correctly	A1
	Total:	4
5(ii)	Use the identity and carry out a method for finding a root	M1
	Obtain answer 20.9°	A1
	Obtain a second answer, e.g. 69.1°	A1FT
	Obtain the remaining answers, e.g. 110.9° and 159.1°, and no others in the given interval	A1FT
	Total:	4

6. 9709/33/M/J/18 Q7

Question	Answer	Marks
7(i)	State answer $R = \sqrt{5}$	B1
	Use trig formulae to find tan α	M1
	Obtain $\tan \alpha = 2$	A1
	Total:	3

7. 9709/31/0/N/18 Q6

Question	Answer	Marks
6(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1
	State $R = 2$	B1
	Use trig formulae to obtain α	M1
	Obtain $\alpha = 30^{\circ}$ with no errors seen	A1
		4

Question	Answer	Marks
6(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{R}\right)$	B1ft
	Carry out a correct method to find a value of x in the given interval	M1
	Obtain answer $x = 75^{\circ}$	A1
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	A1ft
		4

8. 9709/32/0/N/18 Q2

Question	Answer	Marks	Guidance
2	Use trig formula and obtain an equation in $\sin\theta$ and $\cos\theta$	M1*	Condone sign error in expansion and/or omission of " $+\cos\theta$ " $\sin\theta\cos30^{\circ}-\cos\theta\sin30^{\circ}+\cos\theta=2\sin\theta$
	Obtain an equation in $\tan \theta$	M1(dep*)	e.g. $\tan\theta = \frac{1-\sin 30^{\circ}}{2-\cos 30^{\circ}}$ Can be implied by correct answer following correct expansion. Otherwise need to see working
	Obtain $\tan \theta = 1/(4-\sqrt{3})$, or equivalent	A1	$\frac{4+\sqrt{5}}{13}$, 0.4409 (2 s.f or better)
	Obtain final answer $\theta = 23.8^{\circ}$ and no others in range	A1	At least 3 sf (23.7939) ignore extra values outside range
		4	

. 9709/33/0/N/18 Q6

Question	Answer	Marks
6(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1
	State $R = 2$	B1
	Use trig formulae to obtain α	M1
	Obtain $\alpha = 30^{\circ}$ with no errors seen	A1
		4

Question	Answer	Marks
6(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{R}\right)$	B1ft
	Carry out a correct method to find a value of x in the given interval	M1
	Obtain answer $x = 75^{\circ}$	A1
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	A1ft
		4

. 9709/32/F/M/19 Q3

Question	Answer	Marks
3(i)	Use trig formulae and obtain an equation in $\sin \theta$ and $\cos \theta$	M1
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for $\tan \theta$	M1
	Obtain answer tan $\theta = \frac{2\sqrt{2} - 1}{1 - \sqrt{6}}$, or equivalent	A1
		4
3(ii)	State answer, e.g. $\theta = 128.4^{\circ}$	B1
	State second answer, e.g. $\theta = 308.4^{\circ}$	B1 ft
		2

11. 9709/31/M/J/19 Q4

Question	Answer	Marks	Guidance
4	Use correct trig formula and obtain an equation in $\tan \theta$	M1	Allow with 45° e.g. $\frac{1}{\tan \theta} - \frac{1}{\frac{\tan \theta + \tan 45^{\circ}}{1 - \tan \theta \tan 45^{\circ}}} = 3$
	Obtain a correct horizontal equation in any form	A1	e.g. $1 + \tan \theta - \tan \theta (1 - \tan \theta) = 3 \tan \theta (1 + \tan \theta)$
	Reduce to $2\tan^2\theta + 3\tan\theta - 1 = 0$	A1	or 3-term equivalent
	Solve 3-term quadratic and find a value of θ	M1	Must see working if using an incorrect quadratic
	Obtain answer 15.7°	A1	One correct solution (degrees to at least 3 sf)
	Obtain answer 119.(3)°	A1	Second correct solution and no others in range (degrees to at least 3 sf) Mark 0.274, 2.082 as MR: A0A1
		6	

12. 9709/31/M/J/19 Q6

Question	Answer	Marks	Guidance
6(i)	State correct expansion of $\sin(2x+x)$	B1	
	Use trig formulae and Pythagoras to express $\sin 3x$ in terms of $\sin x$	M1	
	Obtain a correct expression in any form	A1	e.g. $2\sin x (1-\sin^2 x) + \sin x (1-2\sin^2 x)$
	Obtain $\sin 3x = 3\sin x - 4\sin^3 x$ correctly AG	A1	Accept = for ≡
		4	

13. 9709/32/M/J/19 Q3

Question	Answer	Marks	Guidance
3	Use correct trig formulae to obtain an equation in $\tan \theta$ or equivalent (e.g all in $\sin \theta$ or all in $\cos \theta$)	*M1	$\frac{1-\tan^2\theta}{2\tan\theta} = 2\tan\theta \cdot \text{Allow } \frac{\cot^2\theta - 1}{2\cot\theta} = \frac{2}{\cot\theta}$
	Obtain a correct simplified equation	A1	$5 \tan^2 \theta = 1$ or $\sin^2 \theta = \frac{1}{6}$ or $\cos^2 \theta = \frac{5}{6}$
	Solve for θ	DM1	Dependent on the first M1
	Obtain answer 24.1° (or 155.9°)	A1	One correct in range to at least 3 sf
	Obtain second answer	A1	FT 180° – their 24.1° and no others in range. Correct to at least 3 sf. Accept 156° but not 156.0 Ignore values outside range If working in $\tan \theta$ or $\cos \theta$ need to be considering both square roots to score the second A1 Mark 0.421, 2.72 as a MR, so A0A1
		5	

14. 9709/33/M/J/19 Q3

LURLIQHED

Question	Answer	Marks
3(i)	Use double angle formulae and express entire fraction in terms of $\sin\theta$ and $\cos\theta$	M1
	Obtain a correct expression	A1
	Obtain the given answer	A1
		3

15. 9709/31/0/N/19 Q9

Question	Answer	Marks	Guidance
9(i)	Use $cos(A + B)$ formula to express $cos3x$ in terms of trig functions of $2x$ and x	M1	
	Use double angle formulae and Pythagoras to obtain an expression in terms of cos x only	M1	
	Obtain a correct expression in terms of cos x in any form	A1	
	Obtain $\cos 3x = 4\cos^3 x - 3\cos x$	A1	AG
		4	
9(ii)	Use identity and solve cubic $4\cos^3 x = -1$ for x	M1	$\cos x = -0.6299$
	Obtain answer 2.25 and no other in the interval	A1	Accept 0.717π M1A0 for 129.0°
		2	

16. 9709/32/0/N/19 Q4

Question	Answer	Marks	Guidance
4(i)	State $R = \sqrt{7}$	B1	
	Use correct trig formulae to find α	M1	e.g. $\tan \alpha = \frac{1}{\sqrt{6}}$, $\sin \alpha = \frac{1}{\sqrt{7}}$, or $\cos \alpha = \frac{\sqrt{6}}{\sqrt{7}}$
	Obtain $\alpha = 22.208^{\circ}$	A1	ISW
		3	

Question	Answer	Marks	Guidance
4(ii)	Evaluate $\sin^{-1}\left(\frac{2}{\sqrt{7}}\right)$ to at least 1 d.p.	B1FT	49.107° to 3 d.p. B1 can be implied by correct answer(s) later. The FT is on <i>their R</i>
			SC: allow B1 for a correct alternative equation e.g. $3 \tan^2 \theta - 2\sqrt{6} \tan \theta + 1 = 0$
	Use correct method to find a value of θ in the interval	M1	Must get to θ
	Obtain answer, e.g. 13.4°	A1	Accept correct over-specified answers. 13.449, 54.3425
	Obtain second answer, e.g. 54.3° and no extras in the given interval	A1	Ignore answers outside the given interval.
		4	

17. 9709/33/0/N/19 Q4

Question	Answer	Marks	Guidance
4(i)	Use $\tan (A + B)$ formula to express the LHS in terms of $\tan 2x$ and $\tan x$	M1	
	Using the $\tan 2A$ formula, express the entire equation in terms of $\tan x$	M1	
	Obtain a correct equation in tan x in any form	A1	
	Obtain the given form correctly	A1	AG
		4	
4(ii)	Use correct method to solve the given equation for x	M1	
	Obtain answer, e.g. $x = 26.8^{\circ}$	A1	
	Obtain second answer, e.g. $x = 73.7^{\circ}$ and no other	A1	Ignore answers outside the given interval
		3	

18. 9709/32/F/M/20 Q5

Question	Answer	Marks
5(a)	Express LHS correctly as a single fraction	B1
	Use $\cos(A \pm B)$ formula to simplify the numerator	M1
	Use sin 2A formula to simplify the denominator	M1
	Obtain the given result.	A1
		4
	LORFIQUED	

Marks Guidance **A1**

Question Answer 5(b) Obtain an equation in $\tan 2x$ and use correct method to solve for xObtain answer, e.g. 0.232 Obtain second answer, e.g. 1.80 A1 Ignore answers outside the given interval. 3

19. 9709/31/M/J/20 Q3

Question	Answer	Marks
3	Use $\tan (A \pm B)$ formula and obtain an equation in $\tan \theta$	M1
	Using $\tan 60^{\circ} = \sqrt{3}$, obtain a horizontal equation in $\tan \theta$ in any correct form	A1
	Reduce the equation to $3 \tan^2 \theta + 4 \tan \theta - 1 = 0$, or equivalent	A1
	Solve a 3-term quadratic for $\tan \theta$	M1
	Obtain a correct answer, e.g. 12.1°	A1
	Obtain a second correct answer, e.g. 122.9°, and no others in the given interval	A1
		6

20. 9709/31/M/J/20 Q7

Question	Answer	Marks
7(a)	Use quotient or product rule	M1
	Obtain derivative in any correct form e.g. $\frac{-\sin x(1+\sin x)-\cos x(\cos x)}{(1+\sin x)^2}$	A1
	Use Pythagoras to simplify the derivative	М1
	Justify the given statement	A1
		4

21. 9709/32/M/J/20 Q4

Question	Answer	Marks
4	Use correct product rule	M1
	Obtain correct derivative in any form, e.g. $-\sin x \sin 2x + 2\cos x \cos 2x$	A1
	Use double angle formula to express derivative in terms of $\sin x$ and $\cos x$	M1
	Equate derivative to zero and obtain an equation in one trig function	M1
	Obtain $3 \sin 2x = 1$, or $3 \cos 2x = 2$ or $2 \tan 2x = 1$	A1
	Solve and obtain $x = 0.615$	A1
		6

22. 9709/32/M/J/20 Q5

LOBEISHED

Question	Answer	Marks
5(a)	State $R = \sqrt{7}$	B1
	Use trig formulae to find $lpha$	M1
	Obtain $\alpha = 57.688^{\circ}$	A1
		3
5(b)	Evaluate $\cos -1\left(\frac{1}{\sqrt{7}}\right)$ to at least 3 d.p. (67.792°)	B1 FT
	(FT is on their R)	
	Use correct method to find a value of θ in the interval	M1
	Obtain answer, e.g. 5.1°	A1
	Obtain second answer, e.g.117.3°, only	A1
		4

. 9709/33/M/J/20 Q5

Question	Answer	Marks
5	Use $\tan 2A$ formula to express RHS in terms of $\tan \theta$	M1
	Use $\tan (A \pm B)$ formula to express LHS in terms of $\tan \theta$	M1
	Using tan 45° = 1, obtain a correct horizontal equation in any form	A1
	Reduce equation to $2 \tan^2 \theta + \tan \theta - 1 = 0$	A1
	Solve a 3-term quadratic and find a value of θ	M1
	Obtain answer $\theta = 26.6^{\circ}$ and no other	A1
		6

. 9709/31/0/N/20 Q6

Question	Answer	Marks	Guidance			
6(a)	State $R = \sqrt{15}$	B1				
	Use trig formulae to find α	M1	$\frac{\sin \alpha}{\cos \alpha} = \frac{3}{\sqrt{6}}$ with no error seen or $\tan \alpha = \frac{3}{\sqrt{6}}$ quoted then allow M1			
	Obtain $\alpha = 50.77$	A1	Must be 2 d.p. If radians 0.89 A0 MR			
		3				
6(b)	Evaluate $\beta = \cos^{-1} \frac{2.5}{\sqrt{15}}$ (49.797° to 4 d.p.)	B1 FT	The FT is on incorrect R. $\frac{x}{3} = \beta - \alpha [-2.9^{\circ} \text{ and } -301.7^{\circ}]$			
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1	Needs to use $\frac{x}{3}$			
	Obtain answer rounding to $x = 301.6^{\circ}$ to 301.8°	A1				
	Obtain second answer rounding to $x = 2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1				
		4				

. 9709/32/0/N/20 Q4

Question	Answer	Marks	Guidance
4(a)	Use correct $tan(A+B)$ formula and obtain an equation in $tan \theta$	M1	e.g. $\frac{\tan \theta + \tan 60^{\circ}}{1 - \tan \theta \tan 60^{\circ}} = \frac{2}{\tan \theta}$
	Use $\tan 60^{\circ} = \sqrt{3}$ and obtain a correct horizontal equation in any form	A1	e.g. $\tan \theta \left(\tan \theta + \sqrt{3} \right) = 2 \left(1 - \sqrt{3} \tan \theta \right)$
	Reduce to $\tan^2 \theta + 3\sqrt{3} \tan \theta - 2 = 0$ correctly	A1	AG
		3	
4(b)	Solve the given quadratic to obtain a value for θ	M1	$ \left(\tan\theta = \frac{-3\sqrt{3} \pm \sqrt{35}}{2} = 0.3599, -5.556\right) $
	Obtain one correct answer e.g. $\theta = 19.8^{\circ}$	A1	Accept 1d.p. or better. If over-specified must be correct. 19.797, 100.2029
	Obtain second correct answer $\theta = 100.2^{\circ}$ and no others in the given interval	A1	Ignore answers outside the given interval.
		3	

. 9709/33/0/N/20 Q6

VELIVILLE	

Question	Answer	Marks	Guidance
6(a)	State $R = \sqrt{15}$	В1	
	Use trig formulae to find α	M1	$\frac{\sin \alpha}{\cos \alpha} = \frac{3}{\sqrt{6}}$ with no error seen or $\tan \alpha = \frac{3}{\sqrt{6}}$ quoted then allow M1
	Obtain $\alpha = 50.77$	A1	Must be 2 d.p. If radians 0.89 A0 MR
		3	
6(b)	Evaluate $\beta = \cos^{-1} \frac{2.5}{\sqrt{15}}$ (49.797° to 4 d.p.)	B1 FT	The FT is on incorrect R. $\frac{x}{3} = \beta - \alpha [-2.9^{\circ} \text{ and } -301.7^{\circ}]$
	Use correct method to find a value of $\frac{x}{3}$ in the interval	M1	Needs to use $\frac{x}{3}$
	Obtain answer rounding to $x = 301.6^{\circ}$ to 301.8°	A1	
	Obtain second answer rounding to $x = 2.9(0)^{\circ}$ to $2.9(2)^{\circ}$ and no others in the interval	A1	
		4	

. 9709/32/F/M/21 Q3

UPLIVITUR

Question	Answer	Marks	Guidance
3	Use correct trig formulae to obtain an equation in tan x	*M1	
	Using $\tan 45^{\circ} = 1$, obtain a horizontal equation in $\tan x$ in any form	DM1	
	Reduce the equation to $\tan^2 x + \tan x - 1 = 0$, or 3-term equivalent	A1	
	Solve a 3-term quadratic in tan x, for x	M1	
	Obtain answer, e.g. $x = 31.7^{\circ}$	A1	
	Obtain second answer, e.g. $x = 121.7^{\circ}$, and no other in the interval	A1	Ignore answers outside the given interval.
		6	

. 9709/32/F/M/21 Q5

Question	Answer	Marks	Guidance
5(a)	State $R = \sqrt{11}$	B1	
	Use trig formulae to find α	M1	
	Obtain $\alpha = 37.09^{\circ}$	A1	
		3	
5(b)	Evaluate $\sin^{-1}\left(\frac{1}{\sqrt{11}}\right)$ to at least 2 dp (17.5484°)	B1 FT	The FT is on R.
	Use correct method to find a value of θ in the interval	M1	
	Obtain answer, e.g. 62.7°	A1	
	Use a correct method to obtain a second answer	M1	
	Obtain second answer, e.g. 170.2°, and no other in the interval	A1	Ignore answers outside the given interval.
		5	

29. 9709/31/M/J/21 Q3

PUBLISHED

Question	Answer	Marks	Guidance
3(a)	Use correct trig expansions and obtain an equation in $\sin x$ and $\cos x$	*M1	
	Use correct exact trig ratios for 30° in their expansion	B1 FT	$e.g. \cos x \left(\frac{\sqrt{3}}{2} - 1\right) = \sin x \left(\sqrt{3} - \frac{1}{2}\right)$
	Obtain an equation in tan x	DM1	Allow if their error in line 1 was a sign error
	Obtain $\tan x = \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}$ from correct working	A1	AG
		4	
3(b)	Obtain answer in the given interval, e.g.173.8°	B1	Accept 174°, 354° or better
	Obtain a second answer and no other in the given interval, e.g. 353.8°	B1	Ignore answers outside the given interval. Treat answers in radians (3.03 and 6.17) as a misread.
		2	

30. 9709/31/M/J/21 Q4

Question	Answer	Marks
4(a)	Use correct double angle formula or <i>t</i> -substitution twice	M1
	Obtain $\frac{1-\cos 2\theta}{1+\cos 2\theta} = \tan^2 \theta$ from correct working	A1
		2

31. 9709/32/M/J/21 Q6

LODEISHED

	I UDLISHED				
Question	Answer	Marks	Guidance		
6(a)	Express the LHS in terms of $\cos 2\theta$ and $\sin 2\theta$	B1	e.g. $\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta}$		
	Use correct double angle formulae to express the LHS in terms of $\cos\theta$ and $\sin\theta$	M1	$e.g. \frac{1 - \left(1 - 2\sin^2\theta\right)}{2\sin\theta\cos\theta}$		
	Obtain $ an heta$ from correct working	A1	AG		
	Alternative method for Question 6(a)				
	Express the LHS in terms of $\sin 2\theta$ and $\tan 2\theta$	B1			
	Use correct double angle formulae to express the LHS in terms of $\cos\theta$ and $\sin\theta$	M1	e.g. $\frac{1}{2\sin\theta\cos\theta} - \frac{1 - \frac{\sin^2\theta}{\cos^2\theta}}{2\frac{\sin\theta}{\cos\theta}} \left(= \frac{4\sin^2\theta}{4\sin\theta\cos\theta} \right)$		
	Obtain $ an heta$ from correct working	A1	AG		
	Alternative method for Question 6(a)				
	Express the LHS in terms of $\sin 2\theta$ and $\tan 2\theta$	B1			
	Use correct t substitution or rearrangement of $\sin 2\theta$ in terms of $\sec^2 2\theta$ and $\tan \theta$ to express the LHS in terms of $\tan \theta$.	M1	$\left(\frac{\sec^2\theta}{2\tan\theta} - \frac{1 - \tan^2\theta}{2\tan\theta} = \right) \frac{1 + \tan^2\theta}{2\tan\theta} - \frac{1 - \tan^2\theta}{2\tan\theta}$		
	Obtain $\tan \theta$ from correct working	A1	AG		
		3			

32. 9709/32/M/J/21 Q10

UPLIVILLE	

Question	Answer	Marks	Guidance
10(a)	State or imply $CD = 2r - 2r\cos x$	B1	
	Using correct formulae for area of sector and trapezium, or equivalent, form an equation in r and x	M1	e.g. $2 \times \frac{1}{2} r^2 x = \frac{0.9}{2} (2r + 2r - 2r \cos x) r \sin x$
	Obtain $x = 0.9(2 - \cos x)\sin x$	A1	AG, NFWW
		3	
10(b)	Calculate the values of a relevant expression or pair of expressions at $x = 0.5$ and $x = 0.7$	M1	Calculated for both values and correct for one value is sufficient for M1. Must be working in radians.
	Complete the argument correctly with correct values	A1	Must have sufficient accuracy to support the answer e.g. 0.5 > 0.484 or 0.016 > 0 or 0.96<1 or 0.7 < 0.716 or 0.016 < 0 1.02>1
		2	

33. 9709/33/M/J/21 Q5

Question	Answer	Marks
5(a)	Use double angle formula to express $\tan 4\theta$ in terms of $\tan 2\theta$	
	Use double angle formula to express result in terms of $\tan \theta$	
	Obtain a correct equation in $\tan \theta$ in any form	
	Obtain the given answer	
		4

LOBEISHED

Question	Answer	Marks	Guidance
5(b)	Solve for $\tan \theta$ and obtain a value of θ	M1	
	Obtain answer, e.g. 53.5°	A1	
	Obtain second answer, e.g. 126.5° and no other in the interval	A1	Ignore answers outside the given interval. Treat answers in radians as a misread.
		3	

34. 9709/31/0/N/21 Q2

.......

Question	Answer	Marks	Guidance		
2(a)	State $R = \sqrt{34}$	B1			
	Use trig formulae to find α	M1	$\tan \alpha = \frac{3}{5} \text{ or } \sin \alpha = \frac{3}{\sqrt{34}} \text{ or } \cos \alpha = \frac{5}{\sqrt{34}}$.		
	Obtain $\alpha = 0.54$	A1	30.96° scores M1A0 .		
		3			
2(b)	State greatest value 34	B1 FT	Their R^2 .		
	State least value 0	B1			
		2			

35. 9709/31/0/N/21 Q5

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	Use correct trig formulae and express equation in terms of $\tan \theta$	M1	
	Obtain a correct equation in $\tan \theta$ in any form	A1	e.g. $\frac{1-\tan^2\theta}{2\tan\theta} + \frac{1}{\tan\theta} = 2$
	Reduce to $\tan^2\theta + 4\tan\theta - 3 = 0$, or 3-term equivalent	A1	
		3	
5(b)	Solve a 3-term quadratic for $\tan \theta$ and calculate θ	M1	$\left(\tan\theta = -2 \pm \sqrt{7}\right)$
	Obtain answer, e.g. 0.573	A1	Must be 3 d.p.
	Obtain second answer, e.g. 1.783 and no other	A1	Ignore answers outside the given interval. Treat answers in degrees as a misread. (32.9°,102.1°)
		3	

36. 9709/32/0/N/21 Q6

LUDIISHED

Question	Answer	Marks	Guidance
6(a)	State correct expansion of $\sin(3x+2x)$ or $\sin(3x-2x)$	B1	
	Substitute expansions in $\frac{1}{2}(\sin 5x + \sin x)$, or equivalent	M1	
	Simplify and obtain $\frac{1}{2}(\sin 5x + \sin x) = \sin 3x \cos 2x$	A1	Obtain the given identity correctly.
		3	

37. 9709/32/0/N/21 Q8

PUBLISHED

Question	Answer	Marks	Guidance
8(a)	Expand the square and equate to 1	B1	
	Use correct double angle formula	M1	Need to see $\frac{4}{2}$ or $\sin 2\theta = 2\sin \theta \cos \theta$ stated.
	Obtain $\cos^4 \theta + \sin^4 \theta = 1 - \frac{1}{2}\sin^2 2\theta$	A1	Obtain the given result correctly.
		3	
8(b)	Use the identity and carry out a method for finding a root	M1	$\left(1 - \frac{1}{2}\sin^2 2\theta = \frac{5}{9}\right)$
	Obtain answer 35.3°	A1	Must be correct if overspecified: 35.264
	Obtain a second answer, e.g. 54.7°	A1 FT	[e.g 90° – their 35.3°] Do not FT if mixing degrees and radians.
	Obtain the remaining answers, e.g. 144.7° and 125.3° and no others in the given interval	A1 FT	[e.g. 180° – and 180° –] Ignore answers outside the given interval. Treat answers in radians as a misread. (0.615, 0.955, 2.19, 2.53) Do not FT if mixing degrees and radians.
		4	

38. 9709/33/0/N/21 Q5

Question	Answer	Marks	Guidance
5	Use double angle formula and obtain an equation in $\sin\theta$	M1	
	Reduce to $6\sin^2\theta + \sin\theta - 5 = 0$, or 3-term equivalent	A1	
	Solve a 3-term quadratic in $\sin \theta$ and calculate θ	M1	
	Obtain answer, e.g. 56.4°	A1	
	Obtain second and third answers, e.g.123.6° and 270° and no others in the given interval	A1	Ignore answers outside the interval. Treat answers in radians as a misread.
		5	

39. 9709/33/0/N/21 Q6

Question	Answer	Marks
6(a)	Use $\cos(A-B)$ formula and obtain an expression in terms of $\sin x$ and $\cos x$	M1
	Collect terms and reach $2 \cos x + \sqrt{3} \sin x$	A1
	State $R = \sqrt{7}$	A1
	Use trig formula to find α	M1
	Obtain $\alpha = 40.89^{\circ}$	A1
		5
6(b)	Use correct method to find x	M1
	Obtain answer $x = 220.9^{\circ}$	A1
		2

40. 9709/32/F/M/22

LODEISHED

Question	Answer	Marks	Guidance
5	Use correct $\tan (A+B)$ formula and obtain an equation in $\tan \alpha$ and $\tan \beta$	М1	$\frac{\tan + \tan}{1 \tan \tan} = 2$
	Substitute throughout for $\tan lpha$ or for $\tan eta$	M1	$\frac{3\tan + \tan}{1 \ 3\tan^2} = 2$
	Obtain $3\tan^2 \beta + 2\tan \beta - 1 = 0$ or $\tan^2 \alpha + 2\tan \alpha - 3 = 0$	A1	OE e.g. $6 \tan^2 \beta + 4 \tan \beta - 2 = 0$ or $\frac{2}{3} \tan^2 \alpha + \frac{4}{3} \tan \alpha - 2 = 0$
	Solve a 3-term quadratic and find an angle	M1	
	Obtain answer $\alpha = 45^{\circ}$, $\beta = 18.4^{\circ}$	A1	$\frac{\pi}{4}$ or 0.785, 0.322
	Obtain answer α =108.4°, β =135°	A1	1.89 , $\frac{3\pi}{4}$ or 2.36. Answer in radians, max. A1A0 or vice versa. Ignore answers outside $[0^{\circ}, 180^{\circ}]$
		6	SC: If A0A0 allow SC B1 for both α 's or both β 's

. 9709/31/M/J/22 Q3

Question	Answer	Marks	Guidance
3	Use correct trigonometric formulae to form an equation in tanx	*M1	$e.g. \frac{1-\tan^2 x}{\tan x} + \frac{3}{\tan x} = 5$
	Obtain a correct linear equation in any form	A1	$1 - \tan^2 x + 3 = 5 \tan x$
	Reduce equation to a 3-term quadratic	A1	$\tan^2 x + 5 \tan x - 4 = 0$, or 3-term equivalent
	Solve a 3-term quadratic in tan x and obtain a value of x	DM1	
	Obtain answer, e.g. $x = 35.1^{\circ}$	A1	
	Obtain second answer, e.g. $x = 99.9^{\circ}$, and no other in $(0^{\circ}, 180^{\circ})$	A1	Ignore answers outside (0°,180°).
			Treat answers in radians (0.612,1.74) as a misread.
	Alternative method for question 3		
	Use correct formulae for $\sin 2x$ and $\cos 2x$ to form an equation in $\sin x$ and $\cos x$	*M1	
	Obtain $4 \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = 5$	A1	
	Reduce equation to a 3-term quadratic	A1	$\tan^2 x + 5 \tan x - 4 = 0$, or 3-term equivalent
	Solve a 3-term quadratic in tan x and obtain a value of x	DM1	
	Obtain answer, e.g. $x = 35.1^{\circ}$	A1	
	Obtain second answer, e.g. $x = 99.9^{\circ}$, and no other in $(0^{\circ}, 180^{\circ})$	A1	Ignore answers outside $(0^{\circ}, 180^{\circ})$. Treat answers in radians $(0.612, 1.74)$ as a misread.
		6	

. 9709/32/M/J/22 Q2

Question	Answer	Marks	Guidance
2	Use correct double-angle formula to obtain an equation in $\cos\theta$	M1	e.g. $3(2\cos^2\theta - 1) = 3\cos\theta + 2$
	Obtain $6\cos^2\theta - 3\cos\theta - 5 = 0$, or 3-term equivalent	A1	M1 A0 is scored if they use any correct formula for $\cos 2\theta$ and make a subsequent error.
	Solve a 3-term quadratic in $\cos \theta$ for θ	M1	As far as $\theta = \cos^{-1}\left(\frac{3-\sqrt{129}}{12}\right)$ if quadratic correct.
	Obtain a correct answer, e.g. 134.1°	A1	Accept greater accuracy e.g. 134.1456, 225.8544.
	Obtain a second answer, e.g. 225.9° and no other in [0°, 360°]	A1 FT	Treat answers in radians (2.34 and 3.94) as a misread. Ignore answers outside [0°, 360°]. The FT is for 360° minus the first answer.
			Special Ruling: If they have an incorrect quadratic that leads legitimately to 4 solutions for θ , allow FT for 360° minus an answer in (0°,180°). More than 4 solutions is maximum M1 A0 M1 A0 A0. If <i>their</i> equation should have 4 solutions and the candidate only gives 3 solutions then M1 A0 M1 A0 A0. Mis-read leading to a quadratic with 4 solutions could score maximum M1 A0 M1 A1 A1 or M1 A0 M1 A1 A0 if extra/missing solution.
		5	

43. 9709/33/M/J/22 Q2

Question	Answer	Marks	Guidance		
2	Use correct $\cos(A-B)$ formula to obtain an equation in $\cos\theta$ and $\sin\theta$	B1	$\cos\theta\cos60 + \sin\theta\sin60 = 3\sin\theta$		
	Use trigonometric formula and substitute values for $\cos 60$ and $\sin 60$ to obtain an equation in $\tan \theta$ (or $\cos \theta$ or $\sin \theta$)	M1	Allow $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$ interchanged.		
			$\frac{1}{2} + \frac{\sqrt{3}}{2} \tan \theta = 3 \tan \theta$		
			$\frac{1}{4}\cos^2\theta = \left(3 - \frac{\sqrt{3}}{2}\right)\left(3 - \frac{\sqrt{3}}{2}\right)(1 - \cos^2\theta)$		
			$\frac{1}{4}(1-\sin^2\theta) = \left(3-\frac{\sqrt{3}}{2}\right)\left(3-\frac{\sqrt{3}}{2}\right)\sin^2\theta$		
	Obtain $\tan \theta = \frac{1}{6 - \sqrt{3}}$ or $\tan \theta = \frac{6 + \sqrt{3}}{33}$ or 0.2343,	A1	OE		
	$\cos \theta = \frac{3\frac{\sqrt{3}}{2}}{\sqrt{10 - 3\sqrt{3}}} \text{ or } 0.9736 \text{ or } \sin \theta = \frac{\frac{1}{2}}{\sqrt{10 - 3\sqrt{3}}} \text{ or } 0.2281$				
	Obtain answer, e.g. $\theta = 13.2^{\circ}$	A1	May be more accurate, allow value rounding to 13.2°. θ = 13.1867°.		
	Obtain second answer, e.g. $\theta = 193.2^{\circ}$ and no others in the given interval	A1 FT	May be more accurate. Allow value rounding to 193.2°. FT is on previous value of θ , must have scored M1. Note if θ is negative (e.g13.2): -13.2 + 180 = 166.8 A0 but -13.2 + 360 = 346.8 A1 FT. Ignore answers outside the given interval. Treat answers in radians as a misread. 0.23015, 3.3717.		

44. 9709/31/0/N/22 Q4

LADPISHER

Question	Answer	Marks	Guidance
4	Use correct $tan(A+B)$ formula and obtain an equation in $tan x$ or an equation in $cos x$ and $sin x$	M1	e.g. $\frac{\tan x + \tan 45^{\circ}}{1 - \tan x \tan 45^{\circ}} = \frac{2}{\tan x}$ Allow if 2 in denominator or $\frac{\sin x \cos 45^{\circ} + \cos x \sin 45^{\circ}}{\cos x \cos 45^{\circ} - \sin x \sin 45^{\circ}} = \frac{2 \cos x}{\sin x}.$
	Obtain correct 3 term equation $\tan^2 x + 3 \tan x - 2 = 0$, or equivalent	A1	or $3\sin x \cos x = 2\cos^2 x - \sin^2 x$
	Solve a 3-term quadratic in tan x and obtain a value for x	M1	
	Obtain answer, e.g. 29.3 °	A1	29.316
	Obtain second answer, e.g. 105.7° and no other	A1	105.583 Ignore answers outside the given interval. Treat answers in radians as a misread.
		5	

. 9709/31/0/N/22 Q6

Question	Answer	Marks	Guidance
6(a)	Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$	B1	
	Express $\cos 2\theta$ in terms of $\cos \theta$ and/or $\sin \theta$	B1	Anywhere
	Expand to obtain a correct expression in terms of $\cos \theta$	B1	e.g. $2(2\cos^2\theta - 1)^2 - 1 + 4(2\cos^2\theta - 1) + 3$
	Reduce correctly to $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$	B1	AG
		4	
6(b)	Use the identity and carry out method to calculate a root	M1	$8\cos^4\theta - 3 = 4$
	Obtain answer, e.g. 14.7°	A1	
	Obtain second answer, e.g.165.3 $^{\circ}$, and no other in the given interval	A1 FT	Ignore answers outside the given interval. Treat answers in radians as a misread.
		3	

. 9709/32/0/N/22 Q3

Question	Answer	Marks	Guidance		
3	Use correct product rule on given expression	*M1			
	Obtain correct derivative in any form	A1	e.g. $\cos x \sin 2x + 2\sin x \cos 2x$		
	Use correct double angle formulae to express derivative in terms of $\sin x$ and $\cos x$	*M1			
	Equate derivative to zero and obtain an equation in one trig variable	DM1	dependent on the 2 previous M Marks.		
	Obtain $3\sin^2 x = 2$, $3\cos^2 x = 1$ or $\tan^2 x = 2$	A1	OE		
	Solve and obtain $x = 0.955$	A1	3 sf only. Final answer in degrees is A0. Ignore any attempt to find the corresponding value of y.		
	Alternative method for the first three marks				
	Use correct double angle formula to obtain $y = 2\cos x - 2\cos^3 x$	*M1	or $y = 2\sin^2 x \cos x$		
	Use chain rule and / or product rule	*M1			
	Obtain derivative $y' = -2\sin x + 6\sin x \cos^2 x$	A1	$y' = -2\sin^3 x + 4\sin x \cos^2 x$		
	Alternative method for the second and third M marks				
	Equate derivative to zero and obtain an equation in $\tan x$ and $\tan 2x$	*M1			
	Use correct double angle formula to obtain an equation in tan x	DM1			
		6			

. 9709/32/0/N/22 Q4

Question	Answer	Marks	Guidance
4(a)	State $R = \sqrt{17}$	B1	Allow if working from an incorrect expansion but not from decimals.
	Use correct trig formulae to find α (Correct expansion and correct expression for trig ratio for α)	M1	NB: $\cos \alpha = 4$ and $\sin \alpha = 1$ scores M0A0. M0 for incorrect expansion of $\cos(x - \alpha)$ M1 for correct expression for trig ratio for α and no errors seen.
	Obtain $\alpha = 14.04^{\circ}$	A1	2 d.p. required Allow M1A1 for correct answer with no working shown. Correct answer from incorrect working (e.g. $\tan^{-1}\left(-\frac{1}{4}\right)$) is awarded M0A0. $180^{\circ} - \tan^{-1}\left(-\frac{1}{4}\right)$ is awarded M1
		3	
4(b)	Evaluate $\cos^{-1}\left(\frac{3}{\sqrt{17}}\right)$ to at least 1 d.p. (43.3138°)	B1 FT	FT <i>their R</i> . Accept awrt 43.3° or awrt 316.7° Can be implied by subsequent working.
	Use correct method to find a value of x in the interval	M1	Must be working with $2x$ and their α .
	Obtain answer, e.g. 14.6 °	A1	Accept overspecified answers but they need to be correct. (14.6388 and 151.3249).
	Use a correct method to find a second answer in the interval	M1	Must be working with $2x$, their α and 360° – their 43.3 .
	Obtain second answer in the interval, e.g. 151.3 $^{\circ}$, and no other in the interval	A1	Ignore answers outside the given interval. Treat answers in radians (0.255 and 2.64) as a misread.
		5	

. 9709/33/0/N/22 Q7

Question	Answer	Marks
7(a)	Rearrange and obtain $4\cos x - \sin x = \sqrt{5}$	B1
	State $R = \sqrt{17}$	B1
	Use trig formulae to find α	M1
	Obtain $\alpha = 14.04^{\circ}$	A1
		4

Question	Answer	Marks	Guidance
7(b)	Evaluate $\cos^{-1}\left(\frac{\sqrt{5}}{\sqrt{17}}\right)$	B1 FT	FT their R.
	Carry out a correct method to find a value of x in the given interval	M1	
	Obtain answer, e.g. 21.6°	A1	
	Obtain a second answer, e.g. 144.4° and no other in the interval	A1	Treat answers in radians as a misread. Ignore answers outside the given interval.
		4	

49. 9709/32/F/M/23 Q6

LODEISHED

Question	Answer	Marks	Guidance
6(a)	State $R = 13$	B1	Allow if $\sqrt{(12^2 + (-5)^2)}$ seen.
	Use correct trig formulae to find $\alpha = \tan^{-1}(\pm 5/12) = \cos^{-1}(\pm 12/13) = \sin^{-1}(\pm 5/13)$	M1	$cos(\alpha) = 12$ and $sin(\alpha) = 5$ M0 However, $sin(\alpha)/cos(\alpha) = 5/12$ or $-5/12$ with no error seen, or $tan(\alpha) = 5/12$ or $-5/12$ quoted then allow.
	Obtain $\alpha = 0.395$	A1	CWO If negative sign seen when finding R then A0 here. If degrees 22.6 A0 MR. Only penalise degrees once in (a) and (b) . Note $\alpha = 0.39479$
		3	
6(b)	$\cos^{-1}\!\left(\frac{6}{R}\right)$	B1FT	SOI 1.0910 FT their incorrect R.
	Use correct method to find a value of 2x in the interval	M1	$2x = \cos^{-1}\left(\frac{6}{R}\right) + \alpha \text{ or } 2\pi - \cos^{-1}\left(\frac{6}{R}\right) + \alpha.$ Allow if $\cos(2x + 0.395)$ seen
	Obtain answer, e.g. $x = 0.743$ or 0.742	A1	42.5 or 42.6 degrees.
	Obtain second answer, e.g. $x = 2.79$ and no others in the interval	A1	159.8, 159.9 or 160.0 degrees all possible depending whether using 3 dp or 4 dp.
		4	

50. 9709/32/F/M/23 Q7

LODDISHED

Question	Answer	Marks	Guidance		
7(a)	State or imply area of major sector = $\frac{1}{2}r^2(2\pi - x)$	B1	OE		
	State or imply area of shaded segment = $\frac{1}{2}r^2x - \frac{1}{2}r^2\sin x$	B1	OE $r^2 \sin(x/2) \cos(x/2)$ B0 until changed to $(1/2)r^2 \sin x$.		
	State $\frac{1}{2}r^2(2\pi - x) = 3\left(\frac{1}{2}r^2x - \frac{1}{2}r^2\sin x\right)$	M1	OE Area of major sector = 3 times (area of minor sector – area of triangle). Allow $r^2 \sin(x/2) \cos(x/2)$.		
	Obtain the given answer $x = \frac{3}{4}\sin x + \frac{1}{2}\pi$ after full and correct working	A1	AG Allow rectified slip if before penultimate line.		
		4			
7(b)	Calculate the values of a relevant expression or pair of expressions at $x = 2$ and $x = 2.5$	M1			
	Complete the argument correctly with correct calculated values	A1	Degrees award 0/2		
		2			

51. 9709/31/M/J/23 Q4

Question	Answer	Marks	Guidance
4(a)	Use correct double angle formulae	M1	e.g. $2\sin\theta\cos\theta + \cos^2\theta - \sin^2\theta = 2\sin^2\theta$
	Obtain $\cos^2 \theta + 2\sin \theta \cos \theta - 3\sin^2 \theta = 0$ from full and correct working	A1	AG Check conclusion is complete and matches the working.
		2	

Question	Answer	Marks	Guidance		
4(b)	Factorise to obtain $(\cos \theta - \sin \theta)(\cos \theta + 3\sin \theta) = 0$	B1	OE		
	Solve a quadratic in $\sin \theta$ and $\cos \theta$ to obtain a value for θ .	M1	$\tan\theta = 1 \text{ or } \tan\theta = -\frac{1}{3}.$		
	Obtain one correct value e.g. 45°	A1			
	Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread. Accept awrt 161.6.		
	Alternative Method 1				
	Obtain $3 \tan^2 \theta - 2 \tan \theta - 1 = 0$	B1			
	Solve a 3 term quadratic in $\tan \theta$ to obtain a value for θ .	M1	$\tan \theta = 1 \text{ or } \tan \theta = -\frac{1}{3}.$		
	Obtain one correct value e.g. 45°	A1			
	Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread.		
	Alternative Method 2				
	Obtain $(\cos\theta + \sin\theta)^2 = (2\sin\theta)^2$	B1			
	Solve to obtain a value for θ .	M1	$\tan\theta = 1 \text{ or } \tan\theta = -\frac{1}{3}.$		
	Obtain one correct value e.g. 45°	A1			
	Obtain a second correct value e.g. 161.6° and no others in the interval	A1	Mark answers in radians (0.785 and 2.82) as a misread.		
		4			

52. 9709/32/M/J/23 Q4

LOPEIGHE

Question	Answer	Marks	Guidance		
4	Use correct double angle formula to obtain an equation in $\cos\left(\frac{x}{2}\right)$ only	*M1	e.g. $2\left(2\cos^2\left(\frac{x}{2}\right)-1\right)-\cos\left(\frac{x}{2}\right)=1$.		
	Obtain a 3 term quadratic in $\cos\left(\frac{x}{2}\right)$,	A1	e.g. $4\cos^2\left(\frac{x}{2}\right) - \cos\left(\frac{x}{2}\right) - 3 = 0$.		
			Allow $4\cos^2 u - \cos u - 3 = 0$. Condone $\frac{x}{2} = x$.		
	Obtain $\cos\left(\frac{x}{2}\right) = -\frac{3}{4} \operatorname{and} \cos\left(\frac{x}{2}\right) = 1$	A1	Allow answer in u e.g. $(4\cos u + 3)(\cos u - 1)$ and condone $\frac{x}{2} = x$.		
	Solve for the original x	DM1	Must see evidence of doubling, not halving.		
	Obtain $x = 0$ and 4.84 and no others in the interval	A1	Ignore any answers outside interval. Accept AWRT 4.84. Accept 1.54π. Must be in radians. 277.2 indicates M1 but is A0.		
	Alternative Method for Question 4				
	Use correct double angle formula to obtain an equation in $\cos x$ only	*M1	e.g. $2\cos x - 1 = \sqrt{\frac{\cos x + 1}{2}}$.		
	Obtain a 3 term quadratic in $\cos x$,	A1	e.g. $8\cos^2 x - 9\cos x + 1 = 0$.		
	Obtain $\cos x = \frac{1}{8}$ and $\cos x = 1$	A1			
	Solve for x	DM1			
	Obtain answers $x = 0$ and 4.84 and no others in the interval	A1	Ignore any answers outside interval. Accept AWRT 4.84. Must be in radians. 277.2 is A0.		
		5			

53. 9709/32/M/J/23 Q6

Question	Answer	Marks	Guidance
6(a)	Calculate the values of a relevant expression or pair of expressions at $x = 0.5$ and $x = 1$	M1	Need to evaluate at both points, but M1 still available if one value incorrect. Use of degrees is M0. Correct use of a smaller interval is M1. If using g(x) – f(x), there needs to be a clear indication of the comparison being made e.g. by listing values in a table. Embedded values 0.5 and 1 are not sufficient. 3.92 and 1.83 alone are not sufficient.
	Complete the argument correctly with conclusion about change of sign or change of inequalities and with correct calculated values. Can all be in symbols – an explanation in words is not required.	A1	e.g. 3.92 > 1.5, 1.83 < 3 or 2.42 > 0, -1.17 < 0.
		2	

54. 9709/33/M/J/23 Q6

Question	Answer	Marks	Guidance
6(a)	Expand $\cos(x-60^\circ)$ correctly and evaluate $3\cos x + 2\cos(x-60^\circ)$ to obtain $4\cos x + \sqrt{3}\sin x$ or unsimplified coefficients	B1	Need to see $A \cos x + B \sin x$ with A and B correct A may be 4 or $3 + 2 \cos 60$ and B may be $\sqrt{3}$ or $2 \sin 60$.
	State $R = \sqrt{19} [R \cos \alpha = 4 R \sin \alpha = \sqrt{3}]$	B1 FT	Follow through <i>their</i> 4 and $\sqrt{3}$. If coefficients are 3 and 2 then B0. $R = \sqrt{19}$ from $R = 4.36$ B0 but 4.36 seen after $\sqrt{19}$ ISW.
	Use correct trig formulae for their expansion to find α e.g. $\alpha = \tan^{-1} \frac{\sqrt{3}}{4}$ or $\cos^{-1} \frac{4}{\sqrt{19}}$ or $\sin^{-1} \frac{\sqrt{3}}{\sqrt{19}}$	M1	If $\sin \alpha = \sqrt{3} \cos \alpha = 4$ seen then M0 A0. If $\tan \alpha = 23.41^{\circ}$ M0 A0 but can recover if $\alpha = 23.41^{\circ}$ seen later. $\alpha = \tan^{-1} \frac{2}{3}$ M1 $(\alpha = 33.69^{\circ})$ but $\alpha = \tan^{-1} \frac{3}{2}$ M0
	Obtain $\alpha = 23.41^{\circ}$	A 1	Allow if x instead of α .
		4	

Question Guidance Answer Marks B1 FT SOI [55.0°]. 6(b) Follow through their $\sqrt{19}$. Use a correct method to find a value of 2θ (not x) in the interval. $2\theta = \cos^{-1}\left(\frac{2.5}{R}\right) + 23.41^{\circ}$ Allow sign error in moving α to right side or $2\theta = 360^{\circ} - \cos^{-1}\left(\frac{2.5}{R}\right) + 23.41^{\circ}$ with R substituted. Obtain one correct answer e.g. 39.2° **A1** If working for M1 not seen then M1 implied by $39.2^{\circ}\,\text{or}$ 164.2° Must be at least 1d.p. Must be at least 1d.p.
Ignore answers outside the given interval. Obtain second correct answer e.g. 164.2° and no others in the interval **A1** 4

55. 9709/31/0/N/23 Q5

-	

Question	Answer	Marks	Guidance
5(a)	Use correct trig formulae and obtain an equation in $\sin x$ and $\cos x$	*M1	Allow one sign error.
	Obtain a correct equation in any form	A1	$e.g \ 2\cos x \sin \frac{\pi}{6} = -2\sin x \sin \frac{\pi}{3}.$
	Substitute exact trig ratios and obtain an expression for tan x	DM1	Allow one sign error.
	Obtain answer $\tan x = -\frac{1}{\sqrt{3}}$	A1	Or exact equivalent.
		4	
5(b)	Obtain answer, e.g. $x = \frac{5\pi}{6}$	B1	
	Obtain second answer, e.g. $x = \frac{11\pi}{6}$ and no others in the interval	B1FT	FT first answer $+\pi$ (provided $0 \le \text{first answer} \le \pi$). Or FT first answer $-\pi$ (provided $\pi \le \text{first answer} \le 2\pi$). Ignore any answers outside interval.
		2	

56. 9709/32/0/N/23 Q7

Question	Answer	Marks
7(a)	Use correct expansion for $\cos(2\theta + \theta)$	*M1
	Use correct double angle formulae to express $\cos 3\theta$ in terms of $\cos \theta$ and $\sin \theta$	DM1
	Show sufficient working to confirm $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$	A1
		3

Question	Answer	Marks	Guidance
7(b)	Use the identity and correct double angle formula to obtain an equation in $\cos\theta$ only. Must come from using all three terms in the given equation.	*M1	e.g. $4\cos^{3}\theta - 3\cos\theta + \cos\theta(2\cos^{2}\theta - 1) = \cos^{2}\theta$ $6\cos^{3}\theta - \cos^{2}\theta - 4\cos\theta = 0$ or $6\cos^{2}\theta - \cos\theta - 4 = 0$.
	Obtain $\theta = 90^{\circ}$	B1	Allow if $\cos \theta$ obtained correctly as a factor of <i>their</i> expression (even if there is an error in the quadratic factor). Can follow M0.
	Solve a 3-term quadratic in $\cos\theta$ to obtain a value of θ	DM1	
	Obtain one value e.g. 25.3°	A1	Accept awrt 25.3°.
	Obtain a second value e.g. 137.5° and no extras in range	A1	Accept awrt 137.5°. Ignore values outside the range. Mark solutions in radians as a misread (0.442,1.57, 2.40).
		5	

57. 9709/33/0/N/23 Q6

Question	Answer	Marks	Guidance
6(a)	Use correct Pythagoras $\cot^2\theta = \csc^2\theta - 1$ or $\cot^2\theta = 1/\sin^2\theta - 1$ or $\cot^2\theta = \cos^2\theta/\sin^2\theta$ and then $\cos^2\theta = 1 - \sin^2\theta$, together with double angle formula $\cos 2\theta = 1 - 2\sin^2\theta$, to obtain an equation in $\sin \theta$ or $\sin \theta$ and $\csc^2\theta$	M1	If consistent omission of brackets, e.g. $(\sin\theta)^2$ written as $\sin\theta^2$ then SC B1 in place of M1A1.
	Obtain a correct equation in $\sin \theta$ in any form	A1	e.g. $1/\sin^2\theta - 1 + 2(1 - 2\sin^2\theta) = 4$ or $\frac{1-\sin^2}{\sin^2} + 2(1-2\sin^2) = 4$. If $\frac{\cos^2}{\sin^2} + 2(1-2\sin^2) = 4$ then e.g. $1-\sin^2 + 2(1-2\sin^2)\sin^2 = 4$. (missing \sin^2 on right) allow M1A1A0.
	Reduce to the given answer of $4\sin^4\theta + 3\sin^2\theta - 1 = 0$ correctly	A1	AG Must follow from a horizontal equation (no denominators). If $s = \sin \theta$ used and defined, allow all marks. If not defined, award M1A1A0.
		3	

Question	Answer	Marks	Guidance
6(b)	Solve the given quadratic to obtain a value for θ	M1	$(4\sin^2\theta - 1)(\sin^2\theta + 1) = 0$ and solve for θ .
			Incorrect sign in solution of quadratic seen, e.g. $(4\sin^2\theta - 1)(\sin^2\theta - 1) = 0$ then M0 A0 A0 but if only see $(4\sin^2\theta - 1) = 0$ and nothing incorrect seen allow 3/3.
	Obtain answer, e.g. $\theta = 30^{\circ}$	A1	π/6 award A0
	Obtain three further answers, e.g. $\theta = 150^{\circ}$, 210° and 330° and no others in the interval	A1	Ignore any answers outside interval. $5\pi/6 \ 7\pi/6 \ 11\pi/6$ award A1.
		3	

58. 9709/32/F/M/24

Question	Answer	Marks	Guidance
8(a)	Use the correct expansion of $\cos\left(x + \frac{1}{4}\pi\right)$ to obtain $\sin x + 2\cos x$	B1	$3\sin x + 2\sqrt{2}\left(\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right).$
	State $R = \sqrt{5}$	B1 FT	ISW FT <i>their</i> $a\sin x + b\cos x$ provided this expression obtained by correct method.
	Use correct trig formulae to find α	M1	$\alpha = \tan^{-1}(b/a)$ from their $a\sin x + b\cos x$ or \sin^{-1} or \cos^{-1} provided this expression obtained by correct method. NB If $\cos \alpha = 1$ and $\sin \alpha = 2$ then M0 A0.
	Obtain $\alpha = 1.107$	A1	3 d.p. CAO Treat answer in degrees as a misread (63.435°).
		4	
8(b)	$\sin^{-1}\!\left(\frac{1.5}{R}\right)$	B1 FT	Follow their R.
	Use a correct method to obtain an un-simplified value of $ heta$ with their $lpha$	M1	$2\left(\sin^{-1}\left(\frac{1.5}{R}\right) - \alpha\right) \text{ or } 2\left(\pi - \sin^{-1}\left(\frac{1.5}{R}\right) - \alpha\right).$
	Obtain one correct answer e.g0.74 in the interval	A1	
	Obtain second correct answer e.g. 2.60 (2.5986) or $4\pi-0.74=11.8$ or $2.60-4\pi=-9.97$ in the interval	A1	If uses 1.11° withhold first accuracy mark gained, but allow rest of accuracy marks. Allow 2.6(0).
	Obtain two more correct answers e.g. -9.97 and 11.8 and no others in the interval	A1	Ignore answers outside the interval. Treat answers in degrees as a misread. (-571.1°, -42.6°, 148.9°, 677.2°).
		5	