1. 9709/32/F/M/18 Q4

Question	Answer	Marks
4(i)	State or imply $n \ln y = \ln A + 3 \ln x$	B1
	State that the graph of $\ln y$ against $\ln x$ has an equation which is <i>linear</i> in $\ln y$ and $\ln x$, or has equation of the form $nY = \ln A + 3X$, where $Y = \ln y$ and $X = \ln x$, and is thus a straight line.	B1
		2
4(ii)	Substitute x- and y-values in $n \ln y = \ln A + 3 \ln x$ or in the given equation and solve for one of the constants	M1
	Obtain a correct constant, e.g. $n = 1.70$	A1
	Solve for a second constant	M 1
	Obtain the other constant, e.g. $A = 2.90$	A1
		4

2. 9709/31/M/J/18 Q1

Question	Answer	Marks
1	Use law for the logarithm of a product, quotient or power	M1
	Obtain a correct equation free of logarithms, e.g. $4(x^4 - 4) = x^4$	A1
	Solve for <i>x</i>	M1
	Obtain answer $x = 1.52$ only	A1
		4

3. 9709/32/M/J/18 Q1

Question		Answer	Marks	Guidance
1	3 ²	ate or imply non-modular equation $\left(2^{x}-1\right)^{2} = \left(2^{x}\right)^{2}$, or pair of equations	M1	$8(2^{x})^{2} - 18(2^{x}) + 9 = 0$
	3($(2^x - 1) = \pm 2^x$		
	O	btain $2^x = \frac{3}{2}$ and $2^x = \frac{3}{4}$ or equivalent	A1	
	OR: O	btain $2^x = \frac{3}{2}$ by solving an equation	B1	
	O	btain $2^x = \frac{3}{4}$ by solving an equation	B1	
	Use correct meth $2^x = a$, where a	nod for solving an equation of the form $a > 0$	M1	
	Obtain final answ	wers $x = 0.585$ and $x = -0.415$ only	A1	The question requires 3 s.f. Do not ISW if they go on to reject one value
			4	

4. 9709/33/M/J/18 Q1

Question	Answer	Marks
1	Obtain a correct unsimplified version of the x or x^2 term of the expansion of $(4-3x)^{-\frac{1}{2}}$ or $\left(1-\frac{3}{4}x\right)^{-\frac{1}{2}}$	M1
	State correct first term 2	B1
	Obtain the next two terms $\frac{3}{4}x + \frac{27}{64}x^2$	A1 + A1
	Total:	4

5. 9709/31/0/N/18 Q2

Question	Answer	Marks
2	Rearrange the equation in the form $ae^{2x} = b$ or $ae^{x} = be^{-x}$	M1
	Obtain correct equation in either form with $a = 2$ and $b = 5$	A1
	Use correct method to solve for x	M1
	Obtain answer $x = 0.46$	A1
		4

6. 9709/32/0/N/18 Q4

Question	Answer	Marks	Guidance
4	Substitute and obtain 3-term quadratic $3u^2 + 4u - 1 = 0$, or equivalent	B1	e.g. $3(e^x)^2 + 4e^x - 1 = 0$
	Solve a 3 term quadratic for <i>u</i>	M1	Must be an equation with real roots
	Obtain root $(\sqrt{7}-2)/3$, or decimal in [0.21, 0.22]	A1	Or equivalent. Ignore second root (even if incorrect)
	Use correct method for finding x from a positive value of e^x	M1	Must see some indication of method: use of $x = \ln u$
	Obtain answer $x = -1.536$ only	A1	CAO. Must be 3 dp
		5	

7. 9709/33/0/N/18 Q2

Question	Answer	Marks
2	Rearrange the equation in the form $ae^{2x} = b$ or $ae^{x} = be^{-x}$	M1
	Obtain correct equation in either form with $a = 2$ and $b = 5$	A1
	Use correct method to solve for <i>x</i>	M1
	Obtain answer $x = 0.46$	A1
		4

8. 9709/32/F/M/19 Q1

Question	Answer	Marks
1(i)	Use law for the logarithm of a product or quotient	M1
	Use $\log_{10} 100 = 2$ or $10^2 = 100$	M1
	Obtain $x^2 - 4x - 100 = 0$, or equivalent	A1
		3
1(ii)	Solve a 3-term quadratic equation	M1
	Obtain answer 12.2 only	A1
		2

9. 9709/31/M/J/19 Q2

Question	Answer	Marks	Guidance
2	Use law for the logarithm of a product, quotient or power	M1	Condone $\ln \frac{x}{x-1}$ for M1
	Obtain a correct equation free of logarithms	A1	e.g. $(2x-3)(x-1) = x^2$ or $x^2 - 5x + 3 = 0$
	Solve a 3-term quadratic obtaining at least one root	M1	Must see working if using an incorrect quadratic $\left(\frac{5\pm\sqrt{13}}{2}\right)$
	Obtain answer $x = 4.30$ only	A1	Q asks for 2 dp. Do not ISW. Overspecified answers score A0 Overspecified and no working can score M1A0
		4	

10. 9709/32/M/J/19 Q2

Question	Answer	Marks	Guidance
2	State or imply $u^2 - u - 12(=0)$, or equivalent in 3^x	B1	Need to be convinced they know $3^{2x} = (3^x)^2$
	Solve for u , or for 3^x , and obtain root 4	B1	
	Use a correct method to solve an equation of the form $3^x = a$ where a >0	M1	Need to see evidence of method. Do not penalise an attempt to use the negative root as well. e.g. $x \ln 3 = \ln a$, $x = \log_3 a$ If seen, accept solution of straight forward cases such as $3^x = 3$, $x = 1$ without working
	Obtain final answer $x = 1.26$ only	A1	The Q asks for 2 dp
		4	

11. 9709/33/M/J/19 Q1

Question	Answer	Mar
1	Use law of the logarithm of a product or quotient	
	Use law of the logarithm of power twice	
	Obtain a correct linear equation in x, e.g. $(3-2x)\ln 5 = \ln 4 + x\ln 7$	
	Obtain answer $x = 0.666$	

12. 9709/31/0/N/19 Q1

Question	Answer	Marks	Guidance		
1	State $1 + e^{2y} = e^x$	B1			
	Make <i>y</i> the subject	M1	Rearrange to $e^{2y} = \dots$ and use logs		
	Obtain answer $y = \frac{1}{2} \ln \left(e^x - 1 \right)$	A1	OE		
		3			

13. 9709/32/0/N/19 Q1

Question	Answer	Marks	Guidance
1	Remove logarithms and state $4-3^x = e^{1.2}$, or equivalent	B1	Accept $4-3^x = 3.32(01169)$ 3 s.f. or better
	Use correct method to solve an equation of the form $3^x = a$, where $a > 0$.	M1	$(3^x = 0.67988)$ Complete method to $x =$ If using log ₃ the subscript can be implied
	Obtain answer $x = -0.351$ only	A1	CAO must be to 3 d.p.
		3	

14. 9709/33/0/N/19 Q3

Question	Answer	
3	Reduce the equation to a horizontal equation in 3^{3x} , 3^{3x+1} or 27^x	
	Simplify and reach $3(3^{3x}) = 5$, $3(27^x) = 5$, or equivalent	
	Use correct method for finding x from a positive value of 3^{3x} , 3^{3x+1} or 27^x	
	Obtain answer $x = 0.155$	
		4

15. 9709/32/F/M/20 Q2

Question	Answer	Marks
2	Use law of logarithm of a power and sum and remove logarithms	M1
	Obtain a correct equation in any form, e.g. $3(2x+5)=(x+2)^2$	A1
	Use correct method to solve a 3-term quadratic, obtaining at least one root	
	Obtain final answer $x = 1 + 2\sqrt{3}$ or $1 + \sqrt{12}$ only	A1
		4

16. 9709/31/M/J/20 Q1

	PURT2HED	
Question	Answer	Marks
1	Use law of the logarithm of a product or power	M1
	Obtain a correct linear inequality in any form, e.g. $\ln 2 + (1 - 2x) \ln 3 < x \ln 5$	A1
	Solve for <i>x</i>	M1
	Obtain $x > \frac{\ln 6}{\ln 45}$	A1
		4

17. 9709/32/M/J/20 Q2

Question	Answer	Marks
2	State or imply $2 \ln y = \ln A + kx$	B1
	Substitute values of ln y and x, or equate gradient of line to k, and solve for k	M1
	Obtain $k = 0.80$	A1
	Solve for ln A	M1
	Obtain $A = 3.31$	A1
	Alternative method for question 2	
	Obtain two correct equations in y and x by substituting y - and x - values in the given equation	B1
	Solve for k	M1
	Obtain $k = 0.80$	A1
	Solve for A	M1
	Obtain $A = 3.31$	A1
		5

18. 9709/33/M/J/20 Q3

Question	Answer	Marks
3(a)	Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent	B1
	Show equation is $u^2 + u - 1 = 0$, where $u = e^x$, or equivalent	B1
		2
3(b)	Solve a 3-term quadratic for <i>u</i>	M1
	Obtain root $\frac{1}{2}(-1+\sqrt{5})$, or decimal in [0.61, 0.62]	A1
	Use correct method for finding x from a positive root	M1
	Obtain answer $x = -0.481$ only	A1
		4

19. 9709/31/0/N/20 Q4

/. //0/	/3/0/11/20 Q4	1	1
4	State or imply $\log_{10} 10 = 1$	B1	$\log_{10} 10^{-1} = -1$
	Use law of the logarithm of a power, product or quotient	M1	
	Obtain a correct equation in any form, free of logs	A1	e.g. $(2x + 1)/(x + 1)^2 = 10^{-1}$ or $10(2x + 1)/(x + 1)^2 = 10^0$ or 1 or $x^2 + 2x + 1 = 20x + 10$
	Reduce to $x^2 - 18x - 9 = 0$, or equivalent	A1	
	Solve a 3-term quadratic	M1	
	Obtain final answers $x = 18.487$ and $x = -0.487$	A1	Must be 3 d.p. Do not allow rejection.
		6	

20. 9709/32/0/N/20 Q1

Question	Answer	Marks	Guidance
1	State that $1 + e^{-3x} = e^2$	B1	With no errors seen to that point
	Use correct method to solve an equation of the form $e^{-3x} = a$, where $a > 0$, for x or equivalent	M1	$(e^{-3x} = 6.389)$ Evidence of method must be seen.
	Obtain answer $x = -0.618$ only	A1	Must be 3 decimal places
	Alternative method for question 1		
	State that $1 + e^{-3x} = e^2$	B1	
	Rearrange to obtain an expression for e^x and solve an equation of the form $e^x = a$, where $a > 0$, or equivalent	M1	$e^x = \sqrt[3]{\frac{1}{e^2 - 1}}$
	Obtain answer $x = -0.618$ only	A1	Must be 3 decimal places
		3	

21. 9709/33/0/N/20 Q4

4	State or imply $\log_{10} 10 = 1$	B1	$\log_{10} 10^{-1} = -1$
	Use law of the logarithm of a power, product or quotient	M1	
	Obtain a correct equation in any form, free of logs	A1	e.g. $(2x + 1)/(x + 1)^2 = 10^{-1}$ or $10(2x + 1)/(x + 1)^2 = 10^0$ or 1 or $x^2 + 2x + 1 = 20x + 10$
	Reduce to $x^2 - 18x - 9 = 0$, or equivalent	A1	
	Solve a 3-term quadratic	M1	
	Obtain final answers $x = 18.487$ and $x = -0.487$	A1	Must be 3 d.p. Do not allow rejection.
		6	

22. 9709/32/F/M/21 Q1

Question	Answer	Marks
1	Use law of the logarithm of a product or power	
	Obtain a correct equation free of logarithms, e.g. $3(x^3 - 3) = x^3$	
	Obtain $x = 1.65$	
		3

23. 9709/31/M/J/21 Q2

Question	Answer	Marks	Guidance	
2	Reduce to a 3-term quadratic $u^2 + 6u - 1 = 0$ OE	B1	Allow '= 0' implied	
	Solve a 3-term quadratic for <i>u</i>	M1		
	Obtain root $\sqrt{10} - 3$	A1		
	Obtain answer $x = -1.818$ only	A1	The question asks for 3 d.p.	
	Reject $-\sqrt{10} - 3$ correctly	B1	e.g. by stating that $e^x > 0$ or $\ln(-10 - \sqrt{3})$ is impossible Not "math error".	
	Alternative method for Question 2			
	Rearrange to obtain a correct iterative formula	B1	$e.g. x_{n+1} = -\ln\left(6 + e^{x_n}\right)$	
	Use the iterative process at least twice	M1		
	Obtain answer $x = -1.818$	A1		
	Show sufficient iterations to at least 4 d.p. to justify $x = -1.818$	A1	1,-2.165,-1.811,-1.819,-1.818,-1.818	
	Clear explanation of why there is only one real root	B1		
		5		

24. 9709/32/M/J/21 Q3

Question	Answer	Marks	Guidance
3(a)	State or imply $\ln x = \ln A - y \ln 3$	B1	$\left(y = -\frac{1}{\ln 3}\ln x + \frac{\ln A}{\ln 3}\right)$
	State that the graph of y against ln x has an equation that is <i>linear</i> in y and ln x, or has an equation of the standard form $y = mx + c^{*}$ and is thus a straight line	B1	Must be a correct statement. Accept if the 2 equations are written side by side with no comment. An equation with $y \ln 3$ should be compared with the form $py + q \ln x = c$.
	State that the gradient is $-\frac{1}{\ln 3}$	B1	OE. Exact answer required. ISW after a correct statement.
		3	
3(b)	Substitute $\ln x = 0$, $y = 1.3$ and use correct method to solve for A	M1	$(\ln A = 1.3 \ln 3)$ Follow <i>their</i> equation in y and $\ln x$. Must be substituting $\ln x = 0$, not $x = 0$. $\ln 0$ 'used' in the solution scores M0A0.
	Obtain answer $A = 4.17$ only	A1	Must be 2 d.p. as specified in question
		2	

25. 9709/33/M/J/21 Q2

Question	Answer	Marks
2	State or imply $u^2 - 3u - 1 = 0$, or equivalent in 4^x	B1
	Solve for u or 4^x	M1
	Obtain root $\frac{1}{2}(3+\sqrt{13})$, or decimal in [3.30, 3.31]	A1
	Use correct method for finding <i>x</i> from a positive root	M1
	Obtain answer $x = 0.862$ and no other	A1
		5

LODINIED

26. 9709/31/0/N/21 Q1

Question	Answer	Marks
1	State or imply non-modular equation $4^2(5^x-1)^2 = (5^x)^2$ or pair of equations	M1
	$4(5^x - 1) = \pm 5^x$	
	Obtain $5^x = \frac{4}{3}$ and $5^x = \frac{4}{5}$ (or $5^{x+1} = 4$)	A1
	Use correct method for solving an equation of the form $5^x = a$, or $5^{x+1} = b$ where $a > 0$, or $b > 0$	M1
	Obtain answers $x = 0.179$ and $x = -0.139$	A1
	Alternative method for question 1	
	Obtain $5^x = \frac{4}{3}$ by solving an equation	B1
	Obtain $5^x = \frac{4}{5}$ (or $5^{x+1} = 4$) by solving an equation	B1
	Use correct method for solving an equation of the form $5^x = a$, or $5^{x+1} = b$ where $a > 0$, or $b > 0$	M1
	Obtain answers $x = 0.179$ and $x = -0.139$	A1
		4

27. 9709/32/0/N/21 Q1

Question	Answer	Marks	Guidance
1	State or imply non-modular inequality $(2x-1)^2 < 3^2(x+1)^2$, or corresponding quadratic equation	B1	e.g. $5x^2 + 22x + 8 = 0$ Allow recovery from 'invisible brackets' on RHS
	Form and solve a 3-term quadratic in x	M1	
	Obtain critical values $x = -4$ and $x = -\frac{2}{5}$	A1	
	State final answer $x < -4$, $x > -\frac{2}{5}$	A1	Do not condone \leq for <, or \geq for > in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5} < x < -4$ scores A0. Accept equivalent forms using brackets e.g. $x \in (-\infty, -4) \cup (-0.4, \infty)$
	Alternative method for Question 1		
	Obtain critical value $x = -4$ from a graphical method, or by solving a linear equation or linear inequality	B1	\times / /
	Obtain critical value $x = -\frac{2}{5}$ similarly	B2	
	State final answer $x < -4$, $x > -\frac{2}{5}$	B1	Do not condone \leq for <, or \geq for > in the final answer. Allow 'or' but not 'and'. $-\frac{2}{5} < x < -4$ scores A0. Accept equivalent forms using brackets e.g. $x \in (-\infty, -4) \cup (-0.4, \infty)$
		4	

28. 9709/33/0/N/21 Q2

Question	Answer	Marks
2	State or imply $u^2 - 3u - 1 = 0$, or equivalent in 4^x	B1
	Solve for u or 4^x	M1
	Obtain root $\frac{1}{2}(3+\sqrt{13})$, or decimal in [3.30, 3.31]	A1
	Use correct method for finding <i>x</i> from a positive root	M1
	Obtain answer $x = 0.862$ and no other	A1
		5

29. 9709/32/F/M/22 Q3

Question	Answer	Marks	Guidance		
3	State or imply $n \ln x + 2 \ln y = \ln C$	B 1			
	Substitute values of ln y and ln x, or equate gradient of line to $\pm \frac{1}{2}n$, but not $\pm n$, and solve for n	M1	Using lnx and lny values		
	Obtain $n = 0.8[0]$ or $0.8[00]$ or $\frac{4}{5}$	A1			
	Solve for C	M1	Using lnx and lny values in equation of correct form, that is $\ln C$ not C. Allow $C = e^{2.668}$.		
	Obtain <i>C</i> = 14.41	A1	Must be 2 d.p.		
	Alternative method for question 3				
	Obtain two correct equations in n and C by substituting x and y values in the given equation	B 1	$(2.886)^n \times (2.484)^2 = C$ and $(1.363)^n \times (3.353)^2 = C$		
	Solve for <i>n</i>	M1	Using <i>x</i> and <i>y</i> values		
	Obtain $n = 0.8[0]$ or $0.8[00]$ or $4/5$	A1	$\left(\frac{2.886}{1.363}\right)^n \times \left(\frac{2.484}{3.353}\right)^2 = 1$ leading to $n = 0.7995$		
	Solve for C	M1	Using x and y values		
	Obtain <i>C</i> = 14.41	A1	Must be 2 d.p.		
		5			

30. 9709/31/M/J/22 Q1

IUDLISHED

Question	Answer	Marks	Guidance	
1	Use law of the logarithm of a product or a quotient or a power	*M1		
	Obtain a correct linear equation in any form	A1	e.g. $\ln 2 + (2x-1)\ln 3 = (x+1)\ln 4$ or $\log_2 2 + (2x-1)\log_2 3 = (2x+2)\log_2 2$	
	Solve for <i>x</i>	DM1	Allow for unsimplified expression $x =$ Allow M1 M1 for $x=1.45$ from $6^{2x-1} = 4^{x+1}$.	
	Obtain answer $x = 2.21$	A1	The question asks for 2 dp.	
	Alternative method for question 1			
	Correct use of indices to obtain $2.25^x = 6$ or $1.5^{2x} = 6$	M1 A1		
	Correct use of logarithms to solve for x	M1	Allow solution of $2.25^x = 6$ by trial and improvement as far as 2.2	
	Obtain answer $x = 2.21$	A1	Need to see an intermediate step / sequence of iterations.	
		4		

31. 9709/32/M/J/22 Q1

Question	Answer	Marks	Guidance
1	Use law of the logarithm of a product, power or quotient or a law of indices (on an expression that is relevant to the question)	M1	e.g. $\ln(e^{2x}+3) - \ln 3 = \ln\left(\frac{e^{2x}+3}{3}\right)$ or $e^{(2x+\ln 3)} = e^{2x}e^{\ln 3}$
	State a correct equation without logs (in any form)	A1	e.g. $3 + e^{2x} = 3e^{2x}$
	Carry out correct method to solve an equation of the form $e^{2x} = a$, where $a > 0$, or for solving $e^x = b$ ($b > 0$) if they have already taken the square root	M1	Allow for $x = \frac{1}{2} \ln \frac{3}{2}$. M1 can be implied by correct answer.
	Obtain answer $x = 0.203$	A1	CAO. The question requires 3 d.p. Answer only with no working shown is 0/4.
		4	

32. 9709/33/M/J/22 Q3

Question	Answer	Marks	Guidance
3	Use law of logarithm of a product or power	M1	One correct application of a log law.
	Obtain a correct linear equation in any form, e.g. $(3x-1)\ln 2 = \ln 5 - x\ln 3$	A1	
	Solve for <i>x</i>	M1	As far as $x = \dots$ with only minor slips in processing.
	Obtain answer $x = \frac{\ln 10}{\ln 24}$	A1	
	Alternative method for question 3		
	Use laws of indices to split at least one exponential term	M1	e.g. $\frac{2^{3x}}{2}$ or an arrangement with 8^x
	Obtain $24^x = 10$	A1	OE
	Solve for <i>x</i>	M1	
	Obtain answer $x = \frac{\ln 10}{\ln 24}$	A1	
		4	

33. 9709/31/0/N/22 Q3

Question	Answer	Marks	Guidance
3(a)	Use law of logarithm of a power	M1	$\log_3(2x+1) = 1 + \log_3(x-1)^2$
	Use log ₃ 3=1		$\log_{3}(2x+1) = \log_{3} 3 + 2\log_{3}(x-1)$ $\left[\log_{3}\left(\frac{2x+1}{(x-1)^{2}}\right) = \log_{3} 3 \text{ or } \left(\frac{2x+1}{(x-1)^{2}}\right) = 3\right]$ SC For candidates scoring M0 B0 due to combining logs before dealing with coefficient 2, and confusing coefficients,
	Obtain $3x^2 - 8x + 2 = 0$ or $1.5x^2 - 4x + 1 = 0$	A1 3	allow $\log_3 () = c$ leading to $() = 3^c$ B1 . OE 3 terms only and = 0 required.
3(b)	Solve 3-term quadratic equation from part 3(a) or restart to find <i>y</i>	M1	$y = \frac{4 \pm \sqrt{10}}{6} \text{ or } y = 1.1937 \text{ or } y = 0.1396$ (x = 2.3874 or x = 0.2792) May solve for x but must find $y = \frac{x}{2}$ to gain M1.
	Obtain answer 1.19	A1	CAO. 2 dp required.
		2	

34. 9709/32/0/N/22 Q1

Question	Answer	Marks	Guidance		
1	Use law of the logarithm of a power or product	M1	Ignoring the 3 or the 5 is not a misread.		
	Obtain a correct linear equation in any form, e.g. $(3x-1)\ln 2 = \ln 5 + (1-x)\ln 3$	A1	Condone invisible brackets if they are used correctly later.		
	Solve for <i>x</i>	M1	Get as far as $x =$ Condone minor slips in the processing e.g. sign errors and losing a term that had been there, but award M0 for a fundamental error e.g. $3x\ln 2 + x\ln 3 = 3x\ln 6$ or ignoring the 3 or the 5 completely. Condone working in decimals.		
	Obtain final answer $x = \frac{\ln 30}{\ln 24}$	A1	Do not ISW		
	Alternative method for question 1				
	Use laws of indices to split at least one exponential term	M1	e.g. $\frac{2^{3x}}{2}$ or an arrangement with 8^x and/or 3^x .		
	Obtain $24^x = 30$	A1	Or equivalent e.g. $3^x 8^x = 30$ not for $3^x 2^{3x} = 30$ (need two factors with the same index).		
	Solve for x	M1	Get as far as $x = \dots$		
	Obtain final answer $x = \frac{\ln 30}{\ln 24}$	A1	Do not ISW		
		4			

35. 9709/33/0/N/22 Q1

Question	Answer	Marks
1	Use law for the logarithm of a product, quotient or power M	
	Remove logarithms and state a correct equation, e.g. $x(2x-1)=(x+1)^2$	A1
	Solve a 3-term quadratic obtaining at least one root	M1
	Obtain answer 3.303 only	A1
		4

36. 9709/32/F/M/23 Q1

Question	Answer	Marks	Guidance	
1	Use law of the logarithm of a quotient or express x as $\ln e^x$	M1	$x = \ln[(2y - 3)/(y + 4)]$ or $\ln e^x = \ln(2y - 3) - \ln(y + 4)].$	
	Remove logarithms and obtain a correct equation e.g. $e^x = \frac{2y-3}{y+4}$	A1		
	Obtain answer $y = \frac{3 + 4e^x}{2 - e^x}$	A1	OE ISW	
		3		

37. 9709/31/M/J/23 Q1

PUBLISHED				
Question	Answer	Marks	Guidance	
1	$3(e^{2x})^2 - 5(e^{2x}) - 4 = 0$	B1	OE Form 3 term quadratic in e^{2x} .	
	$e^{2x} = \frac{5 \pm \sqrt{73}}{6}, x = \frac{1}{2} \ln\left(\frac{5 + \sqrt{73}}{6}\right)$	M1	Use correct method to solve for <i>x</i> .	
	<i>x</i> = 0.407	A1	Only	
		3		

38. 9709/32/M/J/23 Q2

Question	Answer	Marks	Guidance			
2	Use law of the logarithm of a power, quotient or product	M1	Must be used correctly on a correct term. e.g. M1 for $2 \ln x = \ln x^2$ but M0 for $2 \ln x - \ln 2 = 2 \ln \frac{x}{2}$. M0 for $\ln(2x^2 - 3) = \ln 2x^2 - \ln 3$ $= \ln 2 + 2 \ln x - \ln 3$.			
	Remove logarithms and obtain a correct equation in x	A1	e.g. $2x^2 - 3 = \frac{x^2}{2}$.			
	Obtain final answer $x = \sqrt{2}$ only	A1	If $x = -\sqrt{2}$ is mentioned, it must be rejected.			
		3				

39. 9709/33/M/J/23 Q1

PUBLISHED				
Question	Answer	Marks	Guidance	
1	Use exponentials or law for the logarithm of a product, quotient or power	M1*	$e^{\ln(5+x)} = e^{5+\ln x}$ insufficient. Need e.g. $\ln\left(\frac{x+5}{x}\right) = 5$ or $\ln(x+5) = \ln(e^5) + \ln x$ or $\ln(x+5) = \ln(e^5x)$ or $x+5 = e^{5+\ln x}$ or $x+5 = e^5e^{\ln x}$ and others.	
	Correctly remove logarithms	DM1		
	Obtain a correct equation in x	A1	e.g. $\frac{x+5}{x} = e^5$ (or 148.4) or $x + 5 = xe^5$.	
	Obtain 0.034	A1	CAO Final answer must be 3d.p.	
		4		

40. 9709/31/0/N/23 Q3

LODINIED

Question	Answer	Marks	Guidance	
3	State or imply that $\ln y = \ln a + x \ln b$	B1		
	Carry out a completely correct method for finding $\ln a$ or $\ln b$	M1	$3.7 = \ln a + \ln b$ and $6.46 = \ln a + 2.2 \ln b$ leading to $\ln a = 1.4$, $\ln b = 2.3$.	
	Obtain value $a = 4.06$	A1		
	Obtain value $b = 9.97$	A1	SC B1 for $a = e^{1.4}$ and $b = e^{2.3}$.	
	Alternative Method for Question 3			
	$e^{3.7} = ab^1$ and $e^{6.46} = ab^{2.2}$	B 1		
	Divide to obtain $e^{2.76} = b^{1.2}$ and state or imply $2.76 = 1.2 \ln b$	M1		
	Obtain value $a = 4.06$	A1		
	Obtain value $b = 9.97$	A1		
		4		

41. 9709/32/0/N/23 Q2

Question	Answer	Marks	Guidance
2	Obtain $\frac{dx}{dt} = \frac{2}{t} \ln t$	B1	Any equivalent form.
	Obtain $\frac{\mathrm{d}y}{\mathrm{d}t} = -2t\mathrm{e}^{2-t^2}$	B1	Any equivalent form.
	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ and substitute $t = e$	M1	Correct use of chain rule for $\frac{dy}{dx}\left(\frac{-2e^2e^{2-e^2}}{2\ln e}\right)$.
			Condone an error between correct combination of the derivatives and attempt to substitute e.
	Obtain $-e^{4-e^2}$	A1	ISW Accept -0.0337(405).
			Accept $-0.0337(405)$. Accept $-e^4e^{-e^2}$, $\frac{-e^4}{e^{e^2}}$ and $-e^2e^{2-e^2}$.
			Allow M1A1 for a correct decimal answer following B1B1 seen.
		4	

42. 9709/33/0/N/23 Q1

	1 ODLATED			
Question	Answer	Marks	Guidance	
1	State or imply non-modular inequality $-0.5 < 2^{x+1} - 2 < 0.5$, can be in two separate statements, or $(2^{x+1} - 2)^2 < 0.5^2$ or corresponding pair of linear equations $0.5 = 2^{x+1} - 2$ and $-0.5 = 2^{x+1} - 2$ or quadratic equation $(2^{x+1} - 2)^2 = 0.5^2$	B1	$-0.25 < 2^{x} - 1 < 0.25$, can be in two separate statements, or $(2^{x} - 1)^{2} < 0.25^{2}$ or corresponding pair of linear equations $0.25 = 2^{x} - 1$ and $-0.25 = 2^{x} - 1$ or quadratic equation $(2^{x} - 1)^{2} = 0.25^{2}$. Incorrect inequality mark recoverable by correct final answer or $x < 0.32$ and $x > -0.42$.	
	Use correct method for solving an equation or inequality of the form $2^{x+1} = a$ or $2^x = b$ where $a, b > 0$	M1	Reach $(x + 1)\ln 2 = \ln a$ or equivalent, do not need to reach $x = \dots$	
	Obtain critical values $x = 0.322$ and -0.415 or awrt $x = 0.32$ and -0.42 or exact equivalents	A1	e.g. $\frac{\ln 2.5}{\ln 2} - 1$ and $\frac{\ln 1.5}{\ln 2} - 1$.	
	State final answer -0.415 < <i>x</i> < 0.322 or (-0.415, 0.322)	A1	Need 3 significant figures. Need combined result, not $x < 0.32$ and $x > -0.42$. Must be strict inequalities. No working, 0/4.	
	Alternative method for Question 1			
	Use correct method for solving an equation or inequality of the form $2^{x+1} = a$ or $2^x = b$ where $a, b > 0$	M1	May see $2^{x+1} = 1.5$ and $2^{x+1} = 2.5$. Reach $(x + 1)\ln 2 = \ln a$ or equivalent, don't need to reach $x = \dots$	
	Obtain one critical value, e.g. 0.322 or awrt $x = 0.32$ or exact equivalent	A1	e.g. $\frac{\ln 2.5}{\ln 2} - 1$.	
	Obtain the other critical value e.g. -0.415 or awrt $x = -0.42$ or exact equivalent	A1	e.g. $\frac{\ln 1.5}{\ln 2} - 1$.	

43. 9709/32/F/M/24 Q4

Question	Answer	Marks	Guidance		
4	Obtain $\ln p - \ln q = a$	B1	$\frac{p}{q} = e^a.$		
	$Obtain \ln p + 2\ln q = b$	B1	$pq^2 = e^b$.		
	Completed method to obtain $\ln(p^7q)$	M1	E.g. $\ln q = \frac{b-a}{3}$, $\ln p = \frac{2a+b}{3}$ and attempt 7ln $p + \ln q$. All exponentials must be removed to obtain M1 .		
	Obtain $\frac{13a+8b}{3}$	A1			
	Alternative solution for Question 4				
	State $p^7 q = \left(\frac{p}{q}\right)^x \left(q^2 p\right)^y$	B1	Or $\ln p^7 q = x \ln \frac{p}{q} + y \ln q^2 p$.		
	Equate indices to form simultaneous equations in x and y , can have errors	M1	x + y = 7 and $-x + 2y = 1$.		
	Obtain $7 = x + y$ and $1 = 2y - x$	A1	Leading to $x = \frac{13}{3}, y = \frac{8}{3}$.		
	Evaluate $\mathbf{x} \times a + \mathbf{y} \times b$ to obtain $\frac{13a+8b}{3}$	A1			
		4			