
9 (i)		M1	for use of $\cot x = \frac{\cos x}{\sin x}$ for both terms
	$2\cos x \frac{1}{\sin x} + 1 - \frac{1}{\sin x} + 2\cos x$	111	$\sin x = \sin x$
	$2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$	DM1	for multiplication throughout by $\sin x$
	$2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$		
	$2\cos x (\cos x - \sin x) = \cos x - \sin x$	DM1	for attempt to factorise
	$(2\cos x - 1)(\cos x - \sin x) = 0$	A1	for completely correct solution www
	Alternative method:		
	$a\cos^2 x - a\cos x\sin x - b\cos x$	M1	for expansion of RHS
	$+b\sin x = 0$ $a\cos x \cot x - a\cos x - b\cot x + b = 0$	DM1 DM1	for division by $\sin x$ for comparing like terms to obtain both <i>a</i>
	a-2 $b-1$		and b
		AI	for both correct www
(11)			
	$\cos x = \frac{1}{2}$, $\tan x = 1$	M1	for either
	$x = \frac{\pi}{3} , x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
	Alternative method:		
	$(2\cos x-1)(\cot x-1)=0$		
	Leading to $\cos x = \frac{1}{2}$, $\tan x = 1$	M1	for attempt to factorise the original equation and attempt to solve
	$x = \frac{\pi}{3}, x = \frac{\pi}{4}$	A1,A1	A1 for each, penalise extra solutions within the range by withholding the last A mark
	9 (i) (ii)	$2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$ $2\cos^2 x + \sin x = \cos x + 2\cos x \sin x$ $2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$ $2\cos x (\cos x - \sin x) = \cos x - \sin x$ $(2\cos x - 1)(\cos x - \sin x) = 0$ Alternative method: $a\cos^2 x - a\cos x \sin x - b\cos x$ $+ b\sin x = 0$ $a\cos x \cot x - a\cos x - b\cot x + b = 0$ $a = 2, b = 1$ (ii) $(2\cos x - 1)(\cos x - \sin x) = 0$ $\cos x = \frac{1}{2}, \tan x = 1$ $x = \frac{\pi}{3}, x = \frac{\pi}{4}$ Alternative method: $(2\cos x - 1)(\cot x - 1) = 0$ Leading to $\cos x = \frac{1}{2}, \tan x = 1$	$2\cos x \frac{\cos x}{\sin x} + 1 = \frac{\cos x}{\sin x} + 2\cos x$ $12\cos^2 x + \sin x = \cos x + 2\cos x \sin x$ $2\cos^2 x - 2\cos x \sin x = \cos x - \sin x$ $2\cos x (\cos x - \sin x) = \cos x - \sin x$ $12\cos x (\cos x - \sin x) = \cos x - \sin x$ $12\cos x (\cos x - \sin x) = 0$ 11 $(2\cos x - 1)(\cos x - \sin x) = 0$ $12\cos x - 1 \cos x - b\cos x$ $12\cos x - b\cos x$ $13\cos x -$

2.	5 (i)	$(1 - \cos\theta)(1 + \sec\theta)$ = 1 - \cos\theta + \frac{1}{\cos\theta} - \frac{\cos\theta}{\cos\theta} = \sec\theta - \cos\theta 1	M1	M1 for expansion and use of $\sec \theta = \frac{1}{\cos \theta}$ consistently, allow one sign error
		$= \frac{1}{\cos \theta} - \cos \theta$ $= \frac{1 - \cos^2 \theta}{\cos \theta}$	DM1	for attempt at a single fraction, dependent on first M1
		$=\frac{\sin^2\theta}{\cos\theta}$	A1	
		$=\sin\theta\tan\theta$ www	A1	

	Alternative method: $(1 - \cos\theta) \left(\frac{\cos\theta + 1}{\cos\theta} \right)$	M1	for attempt at a single fraction for second factor and use of $\sec \theta = \frac{1}{1}$
	$=\frac{1-\cos^2\theta}{\cos\theta}$	DM1	and use of $\sec \theta = \frac{1}{\cos \theta}$ for expansion
	$=\frac{\sin^2\theta}{\cos\theta}$	A1	
	$=\sin\theta\tan\theta$ www	A1	
(ii)	$\sin \theta \tan \theta = \sin \theta$ $\sin \theta (\tan \theta - 1) = 0$		
	$\tan \theta = 1, \ \theta = \frac{\pi}{4}, \ \text{allow 0.785 or better}$	B 1	for $\theta = \frac{\pi}{4}$ from $\tan \theta = 1$
	$\sin \theta = 0, \ \theta = 0, \pi \text{ or } 3.14 \text{ or better}$	B1 B1	for $\theta = 0$ from $\sin \theta = 0$ for $\theta = \pi$ from $\sin \theta = 0$

12 (i)	$8(1 - \cos^2 A) + 2\cos A = 7$ or better Solves or factorises <i>their</i> 3-term quadratic in cosA	B1 M1	
	60, 104.477 rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras
(ii)	$\sin(3B+1) = 0.4 \text{ soi}$	B1	may be implied by $\frac{1}{\sin(3B+1)} = 2.5$
	[3B + 1 =] 0.41 or better	M1	implies B1
	0.577, 1.9[0], 2.67 or 0.57669, 1.89823 , 2.67108 rounded or truncated to 4 or more sf	A2	with no extras in range; or AI for any one correct ignoring extras
			If M0 then B2 for all 3 correct angles found or B1 for 1 or 2 correct angles found

8 (a) (b)
$$\frac{\cos c \theta}{\cos c \theta - \sin \theta} = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \sin \theta}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \sin \theta}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \sin \theta}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \frac{1}{\sin \theta}}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \frac{1}{\sin \theta}}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \frac{1}{\sin \theta}}$$

$$= \frac{1}{1 - \sin^2 \theta} \text{ or } = \frac{1}{\frac{1}{\sin \theta} - \frac{1}{\sin \theta}}$$

$$= \frac{1}{\cos^2 \theta}$$

$$= \sec^2 \theta$$
Alt
for completing the proof
Alternative Method using cosec
$$\frac{\csc cosec\theta}{\csc cosec\theta} - \frac{1}{\csc cosec\theta}$$

$$= \frac{1}{\cos^2 \theta - 1}$$

$$= \frac{1 + \cot^2 \theta}{\cot^2 \theta}$$

$$= \tan^2 \theta + 1 - \sec^2 \theta$$
(i)
$$\cos^2 \theta = \frac{1}{2}$$

$$= \tan^2 \theta + 1 - \sec^2 \theta$$
(j)
$$\tan \left[\cos^2 \theta - \frac{1}{2}, \cos \theta = \pm \frac{1}{2} \\ \theta - 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ} \end{bmatrix}$$
Alt
for two correct values for two and then taking the square root.
(i)
$$\tan \left[\frac{x + \frac{\pi}{4}}{1 - \frac{\sqrt{3}}{4}}, \frac{13\pi}{12}, \frac{\pi}{12} \right]$$
Alt
for two correct values and no extras in range.
(b)
$$\tan \left[\frac{x + \frac{\pi}{4}}{1 - \frac{1}{\sqrt{3}}}, \frac{13\pi}{12}, \frac{\pi}{12} \right]$$
Alt
Alt
for two correct values for two and then taking the square root.
(c)
$$\tan \left[\frac{x + \frac{\pi}{4}}{1 - \frac{\sqrt{3}}{2}}, \frac{13\pi}{12}, \frac{\pi}{12} \right]$$
Alt
for two correct values and no extras in range.
(b)
$$\tan \left[\frac{x + \frac{\pi}{4}}{1 - \frac{1}{\sqrt{3}}}, \frac{13\pi}{12}, \frac{\pi}{12} \right]$$
Alt
Alt
for two correct values for the square root.
(c)
$$\tan \left[\frac{x + \frac{\pi}{4}}{1 - \frac{\sqrt{3}}{2}}, \frac{13\pi}{12} \right]$$
Alt, Alt
Alt
for two correct order of operations, can be implied by
$$\frac{x = -\frac{\pi}{12}}$$

$$\frac{\pi}{12}$$

$$\frac{x = \left(-\frac{\pi}{12}\right), \frac{12\pi}{12}, \frac{23\pi}{12}}$$
Alt, Alt
Alt
for two correct order in range in addition to the two correct order the atax of the two correct order in the two correct order i

6 (i)	$\frac{\cos x}{1+\tan x} - \frac{\sin x}{1+\cot x} = \frac{\cos x}{1+\frac{\sin x}{1+\frac{\cos x}{1+\cos x$	M1	$\tan x = \frac{\sin x}{\cos x}$ and $\cot x = \frac{\cos x}{\sin x}$
	$=\frac{\cos^2 x}{\cos x + \sin x} - \frac{\sin^2 x}{\cos x + \sin x}$	M1 A1	Attempt to multiply by cosx and sinx
	$=\frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x + \sin x)}$	A1	AG
(ii)	$-\sin x + \cos x = 3\sin x - 4\cos x$ $5\cos x = 4\sin x$	M1	equate and collect $\sin x$ and $\cos x$ oe
	$\tan x = \frac{5}{4}$	A1	
	$x = 51.3^{\circ}, -128.7^{\circ}$	A1A1	FT from $\tan x = k$

8.	Question	Answer	Marks	Partial Marks
	6(i)	$\frac{1}{\sin\theta} \times \frac{1}{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
		dealing with the fractions correctly	M1	
		$\frac{1}{\sin\theta} \times \frac{\sin\theta\cos\theta}{\cos^2\theta + \sin^2\theta}$	M1	use of identity
		$=\cos\theta$	A1	correct simplification, with all correct
		Alternative 1 $\frac{\operatorname{cosec}\theta}{\frac{1}{\tan\theta} \left(1 + \tan^2\theta\right)}$	M1	dealing with fractions
		$=\frac{\tan\theta\operatorname{cosec}\theta}{\operatorname{sec}^2\theta}$	M1	use of appropriate identity
		$=\frac{\sin\theta}{\cos\theta}\times\frac{1}{\sin\theta}\times\cos^2\theta$	M1	for $\cot \theta = \frac{1}{\tan \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\csc \theta = \frac{1}{\sin \theta}$
		$=\cos\theta$	A1	correct simplification, with all correct

For more topi	r more topical past papers and revision notes visit exambuddy.org				
	Alternative 2 $\frac{\operatorname{cosec}\theta}{\frac{1}{\operatorname{cot}\theta}\left(\operatorname{cot}^2\theta+1\right)}$	M1	dealing with fractions		
	$=\frac{\cot\theta\csc\theta}{\csc^2\theta}$	M1	use of appropriate identity		
	$=\frac{\cot\theta}{\csc\theta}$	M1	for $\cot \theta = \frac{\cos \theta}{\sin \theta}$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$,		
	$=\frac{\cos\theta}{\sin\theta}\times\sin\theta$		$\csc \theta = \frac{1}{\sin \theta}$		
	$=\cos\theta$	A1	correct simplification, with all correct		

9.	4(a)(i)	36	B1	
	4(a)(ii)	7	B 1	
	4(b)	$[y=]5\sin 4x+7$	B4	B1 for each of 5, 4 and 7 and B1 for sine Accept $a = 5$, $b = 4$, $c = 7$ for B3

10.	11(i)	$\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\sin x \cos x} \text{ oe}$	B2	B1 for either $\cot x = \frac{\cos x}{\sin x}$ or $\tan x = \frac{\sin x}{\cos x}$ used B1 for correctly placing over a common denominator or for splitting into 3 correct terms not just for stating or working from both sides
		Valid use of Pythagorean identity e.g. $\cos^2 x + \sin^2 x = 1$	B1	
		Simplification to secx (correct solution only)	B1	not if working from both sides
	11(ii)	$\cos x = \frac{1}{2} \operatorname{soi}$	M1	
		60, 300	A1	Correct pair
		$\cos x = -\frac{1}{2} \operatorname{soi}$	M1	
		120, 240	A1	Correct pair

11.		past papers and revision notes visit exambuddy.or 	5	
	10(i)	$\sin^{-1}\left(\frac{3}{4}\right)$ soi	M1	implied by 0.848[06]
		0.848[06] rot to 3 or more figs or 2.29[35] rot to 3 or more figs	M1	implied by a correct answer of acceptable accuracy
		0.544 486 rot to 3 or more figs isw	A1	
		1.03 or 1.02630 rot to 4 or more figs isw	A1	Maximum 3 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le \frac{\pi}{2}$
	10(ii)	Correctly uses $\tan^2 y = \sec^2 y - 1$ and/or $\frac{\sin y}{\cos y}$ and $\sin^2 y = 1 - \cos^2 y$	M1	for using correct relationship(s) to find an equation in terms of a single trigonometric ratio
		$3\sec^{2} y - 14\sec y - 5 = 0$ $\Rightarrow (3\sec y + 1)(\sec y - 5)$ or $5\cos^{2} y + 14\cos y - 3 = 0$ $\Rightarrow (5\cos y - 1)(\cos y + 3)$	DM1	for factorising or solving their 3-term quadratic dependent on the first M1 being awarded
		$\left[\cos y = -3\right] \cos y = \frac{1}{5}$	A1	
		78.5 or 78.4630 rot to 2 or more decimal places isw	A1	
		281.5 or 281.536 rot to 2 or more decimal places isw	A1	Maximum 4 marks if extra angles in range; no penalty for extra values outside range $0 \le x \le 360$

12.	2	<i>a</i> = 4	B1	
		<i>b</i> = 6	B 1	
		<i>c</i> = -2	M1, A1	M1 for use of $\left(\frac{\pi}{12}, 2\right)$ to obtain <i>c</i> ,
				using <i>their</i> values of a and of b

Question	Answer	Marks	Guidance
11(a)	$\tan\left(\phi + 35^{\circ}\right) = \frac{2}{5}$	M1	dealing correctly with cot and an attempt at solution of $tan(\phi + 35) = c$, order must be correct, to obtain a value for $\phi + 3$
	$\phi + 35^\circ = 21.8^\circ, \ 201.8^\circ, \ 381.8^\circ$	M1	M1dep for an attempt at a second solution in the range, $(180^{\circ} + their)$ first solution in the range oe)
	$\phi = 166.8^{\circ}, 346.8^{\circ}$	A2	A1 for each
11(b)(i)	Either $\frac{\frac{1}{\cos\theta}}{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}$	M1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ where necessary
	$=\frac{1}{\cos\theta}\left(\frac{\sin\theta\cos\theta}{\cos^2\theta+\sin^2\theta}\right)$	M1	dealing with the fractions correctly to get $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ in denominator or as in left hand column
	$=\frac{\sin\theta}{(1)}$	A1	use of identity, together with a complete and correct solution, withhold A1 for incorrect use of brackets
	Or $\frac{\sec \theta}{\frac{1}{\tan \theta} + \tan \theta}$ $= \frac{\sec \theta}{\frac{1 + \tan^2 \theta}{\tan \theta}}$	M1	dealing with fractions in the denominator correctly to get $\frac{1 + \tan^2 \theta}{\tan \theta}$ in the denominator, allow $\tan \theta$ taken to the numerato
	$=\frac{\sec\theta\tan\theta}{\sec^2\theta}$	M1	use of the identity to get $\sec^2 \theta$
	$=\frac{\tan\theta}{\sec\theta} = \frac{\sin\theta}{\cos\theta} \times \cos\theta = \sin\theta$	A1	expressing all terms in terms of $\sin \theta$ and $\cos \theta$ and simplification to the given answer, withhold A1 for incorrect use of brackets

Question	Answer	Marks	Guidance
11(b)(ii)	$\sin 3\theta = -\frac{\sqrt{3}}{2}$	M1	correct attempt to solve for θ , order must be correct, may be implied by one correct solution
	$3\theta = -\frac{2\pi}{3}, \ -\frac{\pi}{3}, \ \frac{4\pi}{3}$ $\theta = -\frac{2\pi}{9}, \ -\frac{\pi}{9}, \ \frac{4\pi}{9}$	A3	A1 for each


14.

1	Using $\tan^2 \theta + 1 = \sec^2 \theta$ to obtain $y = 2(\tan^2 \theta + 1)$ or $(x+5)^2 = \sec^2 \theta - 1$ $(x+5)^2 + 1 = \frac{y}{2}$	M1	use of correct identity
	$y = 2((x+5)^2 + 1)$ oe	A1	

15.

4	<i>a</i> = 3	B 1	
	<i>b</i> = 8	B1	
	$\frac{5}{2} = 3\cos\left(8 \times \frac{\pi}{12}\right) + c$	M1	substitution of $x = \frac{\pi}{12}$ and $y = \frac{5}{2}$ to find <i>c</i>
	<i>c</i> = 4	A1	

Ľ	0.		I	
	4(i)	<i>b</i> = 4	B1	
		<i>c</i> = 6	B1	
		$2 = a + 4\sin\frac{\pi}{2}$	M1	Evaluation of a using <i>their</i> b and <i>their</i> c and the given point.
		a = -2	A1	

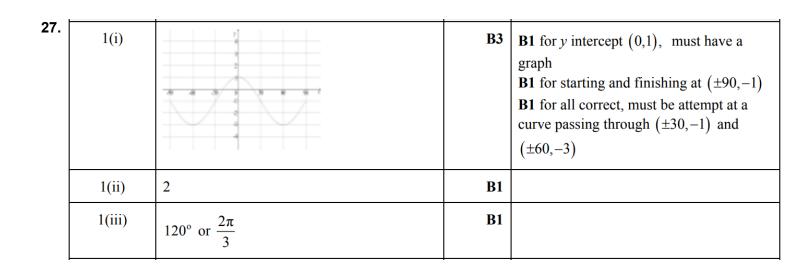
1(i)	$\frac{\pi}{3}$ or 60°	B1	
1(ii)		3	B1 for 3 asymptotes at $x = 30^{\circ}$, 90° and 150°; the curve must approach but not cross all 3 of the asymptotes and be in the 1st and 4th quadrants B1 for starting at (0, 1) and finishing at (180, 1) B1 for all correct

8(a)	$3(1-\sin^2\theta)+4\sin\theta=4$	M1	use of correct identity
	$(3\sin\theta - 1)(\sin\theta - 1) = 0$ $\sin\theta = \frac{1}{3}, \sin\theta = 1$	M1	For attempt to solve a 3 term quadratic equation in $\sin \theta$ to obtain $\sin \theta =$
	$\theta = 19.5^{\circ}, \ 160.5^{\circ}$	A1	
	90°	A1	
8(b)	$\tan 2\phi = \sqrt{3}$ $2\phi = \frac{\pi}{3}, -\frac{2\pi}{3}$	M1	obtaining an equation in $\tan 2\phi$ and correct attempt to solve for one solution to reach $2\phi = k$
	for one correct solution $\phi = \frac{\pi}{6}$, or 0.524	A1	
	for attempt at a second solution	M1	
	$\phi = -\frac{\pi}{3}$, or -1.05	A1	for a correct second solution and no other solutions within the range

11(a)	$10(1-\sin^2 x) + 3\sin x = 9$	M1	
	Solves $10\sin^2 x - 3\sin x - 1 = 0$ oe	M1	dep on first M1 Solves <i>their</i> three term quadratic in sin <i>x</i>
	$\sin x = \frac{1}{2}, \ \sin x = -\frac{1}{5}$	A1	
	30°, 150° and 191.5°, 348.5° awrt	A2	A1 for any two correct solutions
11(b)	$3\frac{\sin 2y}{\cos 2y} = 4\sin 2y \text{ oe}$	M1	
	Solves $3\sin 2y - 4\sin 2y \cos 2y = 0$	M1	dep on first M1
	$\sin 2y = 0 \ \cos 2y = \frac{3}{4}$	A1	
	Any two of π, 0.72273, 5.56045 nfww	A1	
	$\frac{\pi}{2}$, 0.361, 2.78 awrt nfww	A1	SC : cancels out sin2 <i>y</i> after M1M0 allow SC1 for 0.72273 and 5.56045 and SC1 for 0.361 and 2.78

1(i)	Uses $\cot \theta = \frac{\cos \theta}{\sin \theta}$	B3	B1 for using $\cot \theta = \frac{\cos \theta}{\sin \theta}$ or $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or at some stage
	$\frac{\cos^2\theta + \sin^2\theta}{\sin\theta}$		B1 for use of $\cos^2 \theta + \sin^2 \theta = 1$ oe
	Uses $\cos^2 \theta + \sin^2 \theta = 1$ Completes to $\frac{1}{\sin \theta} = \csc \theta$		B1 for common denominator of $\sin\theta$ oe either in a compound fraction or in two partial fractions or for writing $\frac{1-\sin^2\theta}{\sin\theta}$ as $\frac{1}{\sin\theta} - \frac{\sin^2\theta}{\sin\theta}$ oe
			Maximum of 2 marks if not fully correct or does not complete to $cosec\theta$
1(ii)	$\sin\theta = \frac{1}{4}$	M1	
	14.5° or 14.47[751] rot to 4 or more figures isw	A1	Not from wrong working

1	$\sin(x+50^{\circ}) = -\frac{1}{\sqrt{2}}$ (x+50^{\circ} = -45^{\circ}, 225^{\circ})	M1	For order of operations – subtraction of 1, division by $\pm\sqrt{2}$ and attempt at \sin^{-1}
		M1	Dep For obtaining a solution by subtracting 50°
	$x = -95^{\circ}, 175^{\circ}$	A2	A1 for one correct solution A1 for a second correct solution and no others within the range


8(i)	$\frac{(1+\sin x)-(1-\sin x)}{(1-\sin x)(1+\sin x)}$	M1	
	$\frac{2\mathrm{sin}x}{1-\mathrm{sin}^2x}$	A1	
	$\frac{2 \sin x}{\cos^2 x}$	M1	
	$\frac{2\sin x}{\cos x} \times \frac{1}{\cos x} = 2\tan x \sec x$	A1	AG
8(ii)		M1	equate $2\sec x \tan x = \csc x$
	$\tan^2 x = \frac{1}{2}$	A1	
	35.3°, 144.7°, 215.3°, 324.7°	2	A1 two correct

23.	9(a)	$x + \frac{\pi}{4} = \frac{\pi}{3}$	M1	
		$\frac{\pi}{12}$ and $\frac{5\pi}{12}$ (0.262 and 1.31)	A2	A1 for one correct
	9(b)	correctly use $\sec y = \frac{1}{\cos y}$ and $\csc y = \frac{1}{\sin y}$	M1	
		$\tan y = \frac{4}{3}$	A1	obtain expression for tany or y explicitly
		53.1° and 233.1°	A1	
	9(c)	correctly rewrite equation in terms of sinz and cosz	M1	
		use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of pythagorean identity for forming an equation in one trig ratio
		$8\cos^2 z - 2\cos z - 1 = 0$ oe	A1	
		$(4\cos z + 1)(2\cos z - 1) = 0$	M1	solve 3 term quadratic in cosz
		60° and 300° and 104.5° and 255.5°	A2	A1 for any two correct

2(i)	4	B 1	
2(ii)	$120^{\circ} \text{ or } \frac{2\pi}{3}$	B1	
2(iii)		B3	B1 for a complete curve starting at $(-90^{\circ}, 3)$ and finishing at $(90^{\circ}, -5)$ B1 for $-5 \le y \le 3$ for a complete curve Minimum point(s) at $y = -5$ Maximum point(s) at $y = 3$ DepB1 for a fully correct sine curve satisfying both the above and passing through $(-60^{\circ}, -1), (0^{\circ}, -1)$ and $(60^{\circ}, -1)$

11(a)(i)	$\frac{1}{\sin\theta} \left(\frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta} \right)$	M2	M1 for either $\frac{\csc \theta - \cot \theta}{\sin \theta} = \frac{1}{\sin \theta} \left(\csc \theta - \frac{\cos \theta}{\sin \theta} \right)$ or $\frac{\csc \theta - \cot \theta}{\sin \theta} = \frac{1}{\sin \theta} \left(\frac{1}{\sin \theta} - \cot \theta \right)$
	$\frac{1-\cos\theta}{1-\cos^2\theta}$	M1	
	$\frac{1 - \cos\theta}{(1 - \cos\theta)(1 + \cos\theta)} = \frac{1}{1 + \cos\theta}$	A1	
11(a)(ii)	awrt 233.1	B2	with no extras in range B1 for $\cos\theta = -\frac{3}{5}$ soi
11(b)	$3\phi - 4 = \tan^{-1}\left(-\frac{1}{2}\right) \text{ soi}$	M1	
	awrt 0.132, 1.18	A2	with no extras in range A1 for one correct

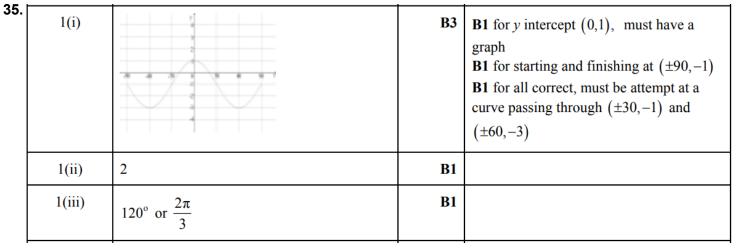
~ ~					
26.	9(a)	$6(1-\cos^2 x)-13\cos x=1$ oe	B 1		
		Solves or factorises <i>their</i> 3-term quadratic	M1		
		70.5 and 289.5	A2	with no extras in range A1 for either, ignoring extras in range	
	9(b)(i)	Numerator: Substitution of $\tan y = \frac{\sin y}{\cos y}$	M1		
		Denominator: Substitution of $1 + \tan^2 y = \sec^2 y$ or substitution of $1 + \tan^2 y = 1 + \frac{\sin^2 y}{\cos^2 y}$ and correct rearrangement to $\frac{1}{\cos^2 y}$ oe	M1		
		Correct completion to $4\sin y$ cao	A1		
	9(b)(ii)	-0.848[06] rot to 3 or more figures	B 1	with no extras in range	

2(i)	8 6 4 -40 -45 0 45 90 r ¹ 4 -40 -45 -4 -40 -45 -45 -40 -45 -45 -40 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45	Β4	B1 for a maximum at $(0, 2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
2(ii)	5	B1	
2(iii)	90°	B 1	

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + 1} + \frac{\frac{1}{\cos x} + 1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ throughout
	$\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x}$	M1	dep Multiply by cos <i>x</i>
	$\frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{(1 + \cos x)\sin x}$	M1	dep Add <i>their</i> fractions correctly and expand $(1 + \cos x)^2$ correctly
	$\frac{2(1+\cos x)}{(1+\cos x)\sin x}$	M1	dep Use $\sin^2 x + \cos^2 x = 1$ and take out a factor of 2.
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.

OR		
$\frac{\tan^2 x + (\sec x + 1)^2}{\tan x (\sec x + 1)}$	M1	Add fractions
$=\frac{2\sec^2 x + 2\sec x}{\tan x(\sec x + 1)}$	M1	dep Expand brackets correctly and use $1 + \tan^2 x = \sec^2 x$
$\frac{2 \sec x}{\tan x}$	M1	dep Cancel sec $x + 1$
$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$
All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.

6(ii)	$3\sin^2 x + \sin x - 2 = 0 \text{ oe}$	B1	Obtain three term quadratic.
	$(3\sin x - 2)(\sin x + 1) = 0$	M1	Solve three term quadratic
	41.8° awrt	A1	
	138.2° awrt	A1	Mark final answers This mark is not awarded if there are more solutions in the range.


2(i)	$\frac{\frac{1}{\sin} - \frac{\cos x}{\sin x}}{1 - \cos x}$	M1	express in terms of sinx and cosx
	$\frac{(1-\cos x)}{\sin(1-\cos x)}$	A1	rewrite not as a fraction within a fraction
	$\frac{1}{\sin x} = \csc x$	A1	correct completion answer given
2(ii)	$\left[\sin x = \frac{1}{2}\right] x = 30^{\circ}$	B1	
	$x = 150^{\circ}$ nfww	B1	no extra answers

5(a)	$\tan\left(y-\frac{\pi}{4}\right) = (\pm)\sqrt{3}$	M1	± 1.73
	$y - \frac{\pi}{4} = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$	A1	1.04(7) or 2.09(4)
	$y = \frac{7\pi}{12}$ or 1.83	A1	
	$y = \frac{11\pi}{12}$ or 2.88	A1	
5(b)	correctly rewrite equation in terms of sinz and cosz	M1	
	use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of Pythagorean identity for forming an equation in one trig ratio
	$6\cos^2 z - 7\cos z + 1 = 0 \mathbf{oe}$	A1	
	$(6\cos z - 1)(\cos z - 1) = 0$	M1	solve three term quadratic in cosz
	80.4°	A1	
	279.6°	A1	

2(a)	1080°	B 1	
2(b)	2	B1	For correct shape and symmetry about the <i>y</i> -axis
			For correct <i>x</i> -intercepts
	307 50 50 507	B1	For correct <i>y</i> -intercept

9(a)	$x + \frac{\pi}{4} = \frac{\pi}{3}$	M1	
	$\frac{\pi}{12}$ and $\frac{5\pi}{12}$ (0.262 and 1.31)	A2	A1 for one correct
9(b)	correctly use $\sec y = \frac{1}{\cos y}$ and $\csc y = \frac{1}{\sin y}$	M1	
	$\tan y = \frac{4}{3}$	A1	obtain expression for tany or y explicitly
	53.1° and 233.1°	A1	
9(c)	correctly rewrite equation in terms of sinz and cosz	M1	
	use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of pythagorean identity for forming an equation in one trig ratio
	$8\cos^2 z - 2\cos z - 1 = 0$ oe	A1	
	$(4\cos z+1)(2\cos z-1)=0$	M1	solve 3 term quadratic in cosz
	60° and 300° and 104.5° and 255.5°	A2	A1 for any two correct

1				
34.	9(a)	$6(1-\cos^2 x)-13\cos x=1$ oe	B 1	
		Solves or factorises <i>their</i> 3-term quadratic	M1	
		70.5 and 289.5	A2	with no extras in range A1 for either, ignoring extras in range
	9(b)(i)	Numerator: Substitution of $\tan y = \frac{\sin y}{\cos y}$	M1	
		Denominator: Substitution of $1 + \tan^2 y = \sec^2 y$ or substitution of $1 + \tan^2 y = 1 + \frac{\sin^2 y}{\cos^2 y}$ and correct rearrangement to $\frac{1}{\cos^2 y}$ oe	M1	
		Correct completion to $4\sin y$ cao	A1	
	9(b)(ii)	-0.848[06] rot to 3 or more figures	B1	with no extras in range

36.	2(i)	40 -45 0 45 90 x	B4	B1 for a maximum at $(0, 2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
	2(ii)	5	B 1	
	2(iii)	90°	B 1	

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + 1} + \frac{\frac{1}{\cos x} + 1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ throughout
	$\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x}$	M1	dep Multiply by cos <i>x</i>
	$\frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{(1 + \cos x)\sin x}$	M1	dep Add <i>their</i> fractions correctly and expand $(1 + \cos x)^2$ correctly
	$\frac{2(1+\cos x)}{(1+\cos x)\sin x}$	M1	dep Use $\sin^2 x + \cos^2 x = 1$ and take out a factor of 2.
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
	$ \frac{\operatorname{tan}^{2} x + (\operatorname{sec} x + 1)^{2}}{\operatorname{tan} x (\operatorname{sec} x + 1)} $	M1	Add fractions
	$=\frac{2\sec^2 x + 2\sec x}{\tan x (\sec x + 1)}$	M1	dep Expand brackets correctly and use $1 + \tan^2 x = \sec^2 x$
	$\frac{2 \sec x}{\tan x}$	M1	$\frac{dep}{Cancel \sec x + 1}$
	$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ of
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.
6(ii)	$3\sin^2 x + \sin x - 2 = 0 \text{ oe}$	B1	Obtain three term quadratic.
	$(3\sin x - 2)(\sin x + 1) = 0$	M1	Solve three term quadratic
	41.8° awrt	A1	
	138.2° awrt	A1	Mark final answers This mark is not awarded if there are more solutions ir the range.

	or more topical past papers and revision notes visit exambuddy.org					
38.	2(i)	$\frac{\frac{1}{\sin} - \frac{\cos x}{\sin x}}{1 - \cos x}$	M1	express in terms of sinx and cosx		
		$\frac{(1-\cos x)}{\sin(1-\cos x)}$	A1	rewrite not as a fraction within a fraction		
		$\frac{1}{\sin x} = \csc x$	A1	correct completion answer given		
	2(ii)	$\left[\sin x = \frac{1}{2}\right] x = 30^{\circ}$	B1			
		$x = 150^{\circ}$ nfww	B 1	no extra answers		

39.	5(a)	$\tan\left(y-\frac{\pi}{4}\right) = (\pm)\sqrt{3}$	M 1	± 1.73
		$y - \frac{\pi}{4} = \frac{\pi}{3}$ or $\frac{2\pi}{3}$	A1	1.04(7) or 2.09(4)
		$y = \frac{7\pi}{12}$ or 1.83	A1	
		$y = \frac{11\pi}{12}$ or 2.88	A1	
	5(b)	correctly rewrite equation in terms of sinz and cosz	M1	
		use $\sin^2 z = 1 - \cos^2 z$	M1	appropriate use of Pythagorean identity for forming an equation in one trig ratio
		$6\cos^2 z - 7\cos z + 1 = 0 \mathbf{oe}$	A1	
		$(6\cos z - 1)(\cos z - 1) = 0$	M1	solve three term quadratic in cosz
		80.4°	A1	
		279.6°	A1	

For more topical past papers and revision notes visit exambuddy.org

40.	2(a)	1080°	B1	
-	2(b)	7	B 1	For correct shape and symmetry about the <i>y</i> -axis
			B1	For correct <i>x</i> -intercepts
			B1	For correct <i>y</i> -intercept
41.	10(a)(i)	$\frac{(\sec\theta+1) - (\sec\theta-1)}{\sec^2\theta - 1}$	M1	For dealing with the fractions
		$\frac{2}{\tan^2\theta}$	M1	For use of the correct identity
		$2\cot^2\theta$	A1	A1 for given answer, must see $\frac{8}{\tan^2 \theta}$ first
	10(a)(ii)	$2\cot^2 2x = 6$ $\tan 2x = \pm \frac{1}{\sqrt{3}}$	M1	M1 for use of (i) and attempt to simplify
		$\tan 2x - \pm \frac{1}{\sqrt{3}}$	A1	
			M1	M1 for attempt to solve, may be implied by one correct solution
		$2x = -150^{\circ}, -30^{\circ}, 30^{\circ}, 150^{\circ}$ $x = -75^{\circ}, -15^{\circ}, 15^{\circ}, 75^{\circ}$	A2	A1 for each pair of correct solutions
	10(b)	$\sin\left(y+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	For dealing with cosec and an attempt to solve
		$y + \frac{\pi}{3} = \frac{5\pi}{6}, \frac{13\pi}{6}$	M1	M1 for a complete method of solution, may be implied by a correct solution
		$y = \frac{\pi}{2}$	A1	
		$y = \frac{11\pi}{6}$	A1	

Question	Answer	Marks	Partial Marks
10(a)	$3x = -\frac{5\pi}{4} - \frac{\pi}{4}, \frac{3\pi}{4}$	M1	For a correct attempt to solve, may be implied by one correct solution
	$x = -\frac{\pi}{12}$	A1	
	$x = \frac{\pi}{4}$	A1	
	$x = -\frac{5\pi}{12}$	A1	
10(b)		B1	Shape – must have three 'parts' with asymptotes
		B1	For correct <i>x</i> -coordinates
		B1	For correct y-coordinate
	きた たの た き		

8(a)	$3(\csc^2 x - 1) - 14\csc x - 2[=0]$	M1	
	$3\csc^2 x - 14\csc x - 5 = 0$	A1	
	$(\csc x - 5)(3\csc x + 1)$	M1	
	$\sin x = \frac{1}{5}$ nfww	A1	
	11.5 and 168.5 nfww	A1	
8(b)	Correct use of $\sin^2 y + \cos^2 y = 1$	B1	
	Factorises using the difference of 2 squares	B1	
	Uses $\frac{1}{\cot y} = \tan y$ or $\cot y = \frac{\cos y}{\sin y}$ correctly	B1	
	Full and correct completion to given answer: $\tan y - 2\cos y \sin y$	B1	

44. 3(a) 2 **B1** 3(b) **B1** 6π or 1080° 3(c) 3 **B1** for passing through $(-\pi, 0)$ and $(3\pi, -3)$ – must be a curve **B1** for correct shape with max on *y*-axis and a min at $x = 3\pi$ **B1** for passing through (0, 1) and 70 1 $(\pi, 0)$ only on the positive *x*-axis 21

5.	11(a)	$2\cos x = 3\frac{\sin x}{\cos x} \implies 2\cos^2 x = 3\sin x$	M1	For use of $\tan x = \frac{\sin x}{\cos x}$ and multiplying by $\cos x$
		$2\left(1-\sin^2 x\right) = 3\sin x$	M1	For use of correct identity
		$2\sin^2 x + 3\sin x - 2 = 0$	A1	For correct rearrangement to obtain the given answer
		Alternative $2\sin^{2} x + 3\sin x - 2$ $= 2(1 - \cos^{2} x) + 3\sin x - 2$	(M1)	For use of correct identity
		$= -2\cos x \cos x + 3\sin x$ $= -3\tan x \cos x + 3\sin x$	(M1)	For use of $2\cos x = 3\tan x$
		$-3\sin x + 3\sin x = 0$	(A1)	For use of $\tan x \cos x = \sin x$ and answer 0

Question	Answer	Marks	Guidance
11(b)	$\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2} \text{ only}$	B1	For solution of quadratic from (a) to obtain $\sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$ only
	$2\alpha + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}$ $2\alpha = \frac{7\pi}{12}, \ \frac{23\pi}{12}$	M1	For correct order of operations in attempt to solve $sin\left(2\alpha + \frac{\pi}{4}\right) = \frac{1}{2}$, may be implied by one correct solution
	$\alpha = \frac{7\pi}{24}$	A1	
	$\alpha = \frac{23\pi}{24}$	A1	

		i i i i i i i i i i i i i i i i i i i		
46.	11(a)	$LHS = \frac{\sin x \times \frac{\sin x}{\cos x}}{1 - \cos x}$	M1	Uses $\tan x = \frac{\sin x}{\cos x}$
		$=\frac{1-\cos^2 x}{\cos x \left(1-\cos x\right)}$	M1	Dep Uses $\sin^2 x = 1 - \cos^2 x$ to eliminate $\sin x$
		$\frac{(1-\cos x)(1+\cos x)}{\cos x(1-\cos x)} = \frac{1+\cos x}{\cos x} = \sec x + 1$	2	M1Dep Factorise correctly and cancel correctly. A1 Uses $\frac{1}{\cos x} = \sec x$
	11(b)	$5\frac{\sin x}{\cos x} - 3\frac{\cos x}{\sin x} = \frac{2}{\cos x}$	B1	Change $\tan x$, $\cot x$ and $\sec x$ into $\sin x$ and $\cos x$ correctly.
		$5\sin^2 x - 3\left(1 - \sin^2 x\right) = 2\sin x$	M1	Multiply correctly by $\sin x \cos x$ and use $\cos^2 x + \sin^2 x = 1$
		$8\sin^2 x - 2\sin x - 3 = 0$	A1	Three term quadratic.
		$(2\sin x+1)(4\sin x-3)=0$	M1	Factorise or use formula on their quadratic
		$\sin x = -\frac{1}{2} \rightarrow x = 210^\circ, 330^\circ$	A1	
		$\sin x = \frac{3}{4} \to x = 48.6^{\circ}, 131.4^{\circ}$	A1	

For more topical past papers and revision notes visit exambuddy.org

47.	9(a)(i)	(3y+2)(2x+1)	B1	
	9(a)(ii)	$(3\cos\theta+2)(2\sin\theta+1)=0$ $\cos\theta=-\frac{2}{3}, \ \sin\theta=-\frac{1}{2}$	M1	For relating to part (i) and a correct attempt to obtain $\cos \theta = \dots$ or $\sin \theta = \dots$
		$\theta = 131.8^{\circ}, 228.2^{\circ}$ $\theta = 210^{\circ}, 330^{\circ}$	3	M1 for solving one of the equations to obtain one correct solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range
	9(b)	$\cos\left(2\phi + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ oe	B1	
		$\phi = -\frac{5\pi}{24}, -\frac{\pi}{24}, \frac{19\pi}{24}, \frac{23\pi}{24}$	4	M1 for solving to obtain one correct positive solution M1 for solving to obtain one correct negative solution A1 for any two correct solutions A1 for a further two correct solutions with no extra solutions within the range

48.	. 10(a)	$\frac{1}{\sin\alpha} + \frac{1}{\cos\alpha} (=0)$	B1	For dealing correctly with $\csc^2 \alpha$ and $\sec^2 \alpha$ to obtain an expression in $\sin \alpha$ and $\cos \alpha$ only
		$\tan \alpha = -1$ or $\sin \alpha = -\cos \alpha$	B1	For an equation in $\tan \alpha$, may be implied by a correct solution.
		$\alpha = -\frac{\pi}{4} \text{ or } -0.785$ $\alpha = \frac{3\pi}{4} \text{ or } 2.36$	2	B1 for one correct solutionB1 for a second correct solution and no extra solutions in the range.

Question	Answer	Marks	Guidance
10(b)(i)	$\frac{\cos^2\theta + 1 - 2\sin\theta + \sin^2\theta}{\cos\theta(1 - \sin\theta)}$	M1	For dealing with the fractions correctly and expansion of $(1 - \sin \theta)^2$
	$\frac{1+1-2\sin\theta}{\cos\theta(1-\sin\theta)} \text{ or better}$	M1	Dep for use of identity, may be implied by $\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$
	$\frac{2(1-\sin\theta)}{\cos\theta(1-\sin\theta)}$	M1	Dep on previous M mark for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	A1	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 1	(M1)	
	$\left(\frac{\cos\theta}{1-\sin\theta}\times\frac{1+\sin\theta}{1+\sin\theta}\right)+\frac{1-\sin\theta}{\cos\theta}$		
	$\frac{\cos\theta(1+\sin\theta)}{\cos^2\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep for use of identity
	$\frac{1+\sin\theta}{\cos\theta} + \frac{1-\sin\theta}{\cos\theta}$	(M1)	Dep on previous M mark for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.
	Alternative 2	(M1)	
	$\frac{\left(1-\sin^2\theta\right)+\left(1-\sin\theta\right)^2}{\cos\theta(1-\sin\theta)}$		For dealing with the fractions and using $\cos^2 \theta = 1 - \sin^2 \theta$.
	$\frac{(1-\sin\theta)(1+\sin\theta)+(1-\sin\theta)^2}{\cos\theta(1-\sin\theta)}$	(M1)	Dep for factorising $1 - \sin^2 \theta$
	$\frac{1+\sin\theta+1-\sin\theta}{\cos\theta}$	(M1)	Dep for simplification
	$\frac{2}{\cos\theta} = 2\sec\theta$	(A1)	Need to see this detail for A1 Need to have had θ in every trigonometric ratio.

Question	Answer	Marks	Guidance
10(b)(ii)	$\cos 3\phi = \frac{1}{2}$	B1	
	$\phi = 20^{\circ}, 100^{\circ}, 140^{\circ}$	3	M1 for one correct solution of <i>their</i> $\cos 3\phi = k$ using a correct order of operations A1 for 2 correct solutions A1 for a third correct solution with no extra solutions in the range

49.	1(a)	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	B1 for shape, must have implied symmetry about $x = 180^{\circ}$, 1 complete maximum point above the <i>x</i> -axis, 2 minimum points below the <i>x</i> -axis, starting and finishing at the same positive <i>y</i> value. 5 and - 7 not necessary for this mark. B1 for $-7 \le y \le 5$, may be implied by numbers in a table if not seen on the graph or by coordinates. Must have maximum point(s) at $y = 5$ only and minimum point(s) at y = -7 only. B1 for a completely correct curve with maximum points implied at the end points.
	1(b)	a = 0 b = 4 c = 1	2	B1 for 2 correct.
		Alternative a = 0 b = -4 c = -1	(2)	B1 for 2 correct.

50.	4(a)	st papers and revision notes visit exambuddy.or $a = -4$	B1	
		$480 = \frac{180}{b} \text{ oe}$	M1	
		$b = \frac{3}{8}$	A1	
	4(b)	Correct sketch	B2	correct tan shape, two branches starting and finishing on same negative y value asymptote implied at $x = 240$ root between 120 and 240 B1 for correct tan shape with exactly two branches plus one other correct property Maximum B1 if not fully correct

I	1		<u> </u>
5(a)	1	B 1	
5(b)	$360 \div \frac{2}{3}$ oe	M1	
	540	A1	If 0 scored, SC1 for 3π
5(c)	Correct sketch for domain $0^{\circ} \le x \le 810^{\circ}$	B2	B1 for correct cosine shape from $(0, -1)$ with amplitude 1 for $0^{\circ} \le x \le 810^{\circ}$ B1 for attempt at correct cosine shape with period 540° for $0^{\circ} \le x \le 810^{\circ}$ If 0 scored, SC1 for a fully correct graph for $0^{\circ} \le x \le 540^{\circ}$ Maximum of 1 mark if not fully correct.

52.	8(a)(i)	Uses correct Pythagorean identity in the left-hand side of the given identity, e.g. $\frac{1-\sin^2 2x}{1+\sin 2x}$	M1	
		$\frac{(1-\sin 2x)(1+\sin 2x)}{1+\sin 2x}$ oe and completion to given answer	A1	
	8(a)(ii)	$\sin 2x = \frac{2}{3}$	M1	
		$x = \frac{1}{2}\sin^{-1}\left(\frac{2}{3}\right)$ soi	M1	dep on first M1
		20.9 or 20.905 rounded or truncated to 4 or more figures and 69.1 or 69.094 rounded or truncated to 4 or more figures	A2	with no incorrect values in range A1 for either angle correct, ignoring extra values
	8(b)	$\tan\left(y - \frac{\pi}{2}\right) = \frac{1}{\sqrt{3}} \text{ soi}$	M1	
		$y = \frac{\pi}{6} + \frac{\pi}{2}$	M1	dep on first M1
		$\frac{2}{3}\pi$ oe or 2.09 or 2.094[39] rot to 4 or more significant figs	A1	with no incorrect values in range

53.

4	$\tan\left(2x+\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}$	B1	
	$x = -\frac{7\pi}{12}, -\frac{\pi}{12}, \frac{5\pi}{12}, \frac{11\pi}{12}$	3	M1 for using correct order of operations A1 for two correct solutions A1 for two further correct solutions and no other solutions in range

54.	3	$\tan\left(2x - \frac{\pi}{3}\right) = \pm\sqrt{3} \text{soi}$ or $\sin\left(2x - \frac{\pi}{3}\right) = \pm\frac{\sqrt{3}}{2} \text{soi}$	B1	B0 if negative root is rejected Allow truncated decimals May be implied by subsequent work From use of $\csc^{2}\left(2x - \frac{\pi}{3}\right) - 1 = \cot^{2}\left(2x - \frac{\pi}{3}\right)$
		$2x - \frac{\pi}{3} = -\frac{\pi}{3}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$ $2x = 0, \frac{2\pi}{3}, \pi, \frac{5\pi}{3}$ $x = 0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}$ or 0, 1.05, 1.57, 2.62 or greater accuracy	4	M1 for correct order of operations to obtain one solution in the range using $\tan\left(2x - \frac{\pi}{3}\right) = k$ or $\sin\left(2x - \frac{\pi}{3}\right) = m$, $ m < 1$ Dep M1 for correct order of operations to obtain a second solution in the range using $\left(2x - \frac{\pi}{3}\right) = \tan^{-1}(k) \pm \pi$ or $\left(2x - \frac{\pi}{3}\right) = \pi - \sin^{-1}(m)$, $ m < 1$ oe $\left(2x - \frac{\pi}{3}\right) = -\sin^{-1}(m)$, $ m < 1$ oe A1 for any pair of correct solutions A1 for remaining pair of solutions, with no extra solutions within the range

3(a)	$\frac{\cos x}{1 - \cos x} + \frac{\cos x}{1 + \cos x} \qquad \text{or } \frac{\sec x + 1 + \sec x - 1}{\sec^2 x - 1}$	M1	
	$\frac{\cos x + \cos^2 x + \cos x - \cos^2 x}{1 - \cos^2 x} \text{or } \frac{2 \sec x}{\tan^2 x}$	A1	
	$\frac{2\cos x}{\sin^2 x} \qquad \text{or } \frac{2\cos^2 x}{\cos x \sin^2 x} \text{ oe}$	A1	
	Fully correct justification of given answer: 2cotxcosecx	A1	
3(b)	$3\tan^2 x = 2$ oe or better, soi or $5\cos^2 x = 3$ oe or better, soi or $5\sin^2 x = 2$ oe or better, soi	B1	
	$\tan x = [\pm] \sqrt{\frac{2}{3}} \text{ oe} \qquad \text{or } [\pm] \ 0.816[4]$ or $\cos x = [\pm] \sqrt{\frac{3}{5}} \text{ oe} \qquad \text{or } [\pm] \ 0.774[5]$ or $\sin x = [\pm] \sqrt{\frac{2}{5}} \text{ oe} \qquad \text{or } [\pm] \ 0.632[4]$	M1	FT an equation of the form $a \tan^2 x = b$, $a > 0$, $b > 0$ or $p \sin^2 x = q$ or $p \cos^2 x = b$ where $p > 0$, $q > 0$ and $p > q$
	39.2° or 39.2315 rot to 2 or more dp 140.8° or 140.7684 rot to 2 or more dp 219.2° or 219.2315 rot to 2 or more dp 320.8° or 320.7684 rot to 2 or more dp	A2	no extras in range

3(a)	<i>a</i> = 3	B1	
	<i>b</i> = 2	B1	
	<i>c</i> = -1	B1	
3(b)(i)	2	B1	
3(b)(ii)	$\frac{2\pi}{3}$ oe or 2.09 or 2.094[395] rot to 4 or more sf	B1	

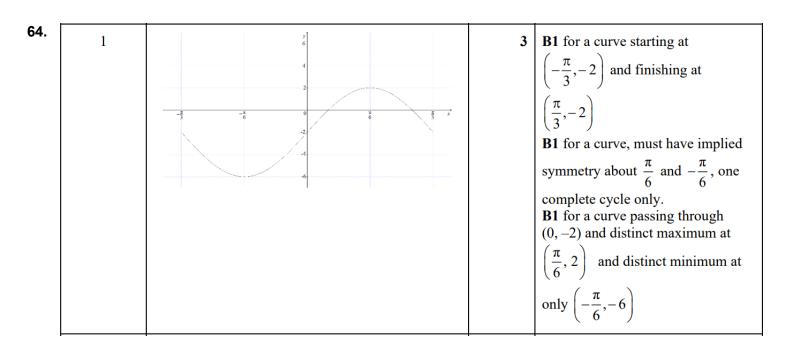
cal past papers and revision notes visit examplications	-	1 1
$\frac{\sin x}{1-\sin x} + \frac{\sin x}{1+\sin x} \text{or } \frac{\csc x + 1 + \csc x - 1}{\csc^2 x - 1} \text{ oe}$	M1	
$\frac{\sin x + \sin^2 x + \sin x - \sin^2 x}{1 - \sin^2 x} \text{ or } \frac{2 \operatorname{cosec} x}{\cot^2 x} \text{ oe}$	A1	
$\frac{2\sin x}{\cos^2 x}$ or $\frac{2\sin^2 x}{\sin x \cos^2 x}$ oe	A1	
Fully correct justification of given answer: $\frac{2 \sin x}{\cos x} \times \frac{1}{\cos x} = 2 \tan x \sec x$ or $2 \tan x \times \frac{1}{\cos x} = 2 \tan x \sec x$	A1	
or $\frac{2 \sin x}{\cos x} \times \sec x = 2 \tan x \sec x$ or equivalent		
$2\tan^2 x = 5$ or better, soi or $7\cos^2 x = 2$ or better, soi or $7\sin^2 x = 5$ or better, soi	B1	
$\tan x = [\pm] \sqrt{\frac{5}{2}} \text{ oe } \text{ or } [\pm] 1.58[1]$ or $\cos x = [\pm] \sqrt{\frac{2}{7}} \text{ oe } \text{ or } [\pm] 0.534[5]$ or $\sin x = [\pm] \sqrt{\frac{5}{7}} \text{ oe } \text{ or } [\pm] 0.845[1]$	M1	FT an equation of the form $a \tan^2 x = b$ $a > 0, b > 0$ or $p \sin^2 x = q$ or $p \cos^2 x = q$ where $p > 0, q > 0$ and $p > q$
57.7 or 57.6884 rot to 2 or more dp 237.7 or 237.6884 rot to 2 or more dp	A2	no extras in range A1 for any two correct answers
122.3 or 122.3115 rot to 2 or more dp302.3 or 302.3115 rot to 2 or more dp		
	$\frac{\sin x + \sin^2 x + \sin x - \sin^2 x}{1 - \sin^2 x} \text{ or } \frac{2 \operatorname{cose} x}{\operatorname{cot}^2 x} \text{ oe}$ $\frac{2 \sin x}{\cos^2 x} \operatorname{or} \frac{2 \sin^2 x}{\sin x \cos^2 x} \operatorname{oe}$ Fully correct justification of given answer: $\frac{2 \sin x}{\cos x} \times \frac{1}{\cos x} = 2 \tan x \sec x$ or $2 \tan x \times \frac{1}{\cos x} = 2 \tan x \sec x$ or $2 \tan x \times \frac{1}{\cos x} = 2 \tan x \sec x$ or $2 \tan x \times \frac{1}{\cos x} = 2 \tan x \sec x$ or $2 \tan^2 x = 5 \text{ or better, soi}$ or $7 \cos^2 x = 2 \text{ or better, soi}$ or $7 \sin^2 x = 5 \text{ or better, soi}$ $\tan x = [\pm] \sqrt{\frac{5}{2}} \text{ oe} \text{ or } [\pm] 1.58[1]$ or $\cos x = [\pm] \sqrt{\frac{7}{7}} \text{ oe} \text{ or } [\pm] 0.534[5]$ or $\sin x = [\pm] \sqrt{\frac{5}{7}} \text{ oe} \text{ or } [\pm] 0.845[1]$ 57.7 or 57.6884 rot to 2 or more dp 122.3 or 122.3115 rot to 2 or more dp	$\frac{1-\sin x}{1-\sin x} + \frac{1+\sin x}{1+\sin x} \text{or } \frac{1-\cos c^2 x-1}{\cos c^2 x-1} \text{oe} \qquad A1$ $\frac{\sin x + \sin^2 x + \sin x - \sin^2 x}{1-\sin^2 x} \text{or } \frac{2\cos c x}{\cot^2 x} \text{oe} \qquad A1$ $\frac{2\sin x}{\cos^2 x} \text{or } \frac{2\sin^2 x}{\sin x \cos^2 x} \text{oe} \qquad A1$ Fully correct justification of given answer: $\frac{2\sin x}{\cos x} \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\tan x \times \frac{1}{\cos x} = 2\tan x \sec x$ or $2\sin x \times \sec x = 2\tan x \sec x$ or $\cos x = 2\tan x \sec x$ or $\cos x = 1\pm \sqrt{\frac{5}{2}}$ oe or $(\pm 1.58[1]$ or $\cos x = [\pm]\sqrt{\frac{5}{2}}$ oe or $(\pm 10.534[5]$ or $\sin x = [\pm]\sqrt{\frac{5}{7}}$ oe or $(\pm 10.845[1]$ $57.7 \text{or } 57.6884 \text{ rot to } 2 \text{ or more } dp$ $122.3 \text{or } 122.3115 \text{ rot to } 2 \text{ or more } dp$

6(a)	<i>k</i> = 14	B 1	
	<i>k</i> = 6	B1	
6(b)(i)	$\frac{(1+\tan\theta)(1+\cos\theta)+(1-\tan\theta)(1-\cos\theta)}{1-\cos^2\theta}$	M1	Allow $(1 + \cos \theta)(1 - \cos \theta)$ in the denominator
	Expansion of numerator and simplification of denominator	M1	Dep on previous M mark
	Use of $\tan \theta \cos \theta = \sin \theta$	B 1	soi
	$\frac{2(1+\sin\theta)}{\sin^2\theta}$	A1	Sufficient simplification to justify obtaining the given answer
6(b)(ii)	$2(1 + \sin \theta) = 3 \sin^2 \theta$ $3 \sin^2 \theta - 2 \sin \theta - 2 = 0$	M1	For use of part (a) and attempt to simplify to a 3-term quadratic equation equated to zero.
	$\sin \theta = \frac{1 - \sqrt{7}}{3}$ or -0.5485	M1	M1 for attempt to solve and obtain a value for θ , may be implied by one correct solution
	213.3° and 326.7°	A2	A1 for one solution If 0 scored SC1 for awrt 213 and 327 Penalise excess solutions in the range

59.

8(a)	$x^{2} + 2\sqrt{5}x - 20 = 3\sqrt{5}x + 10$ $x^{2} - \sqrt{5}x - 30 = 0$	M1	For equating <i>x</i> terms and simplifying to a 3-term quadratic equation equated to zero.
	$x = \frac{\sqrt{5} \pm \sqrt{5 - (4 \times -30)}}{2} \text{oe}$	M1	Dep on previous M mark for attempt to solve to obtain $x =$, sufficient detail must be shown
	$x = 3\sqrt{5} \qquad x = -2\sqrt{5}$	A1	For both
	<i>y</i> = 55, <i>y</i> = -20	A1	For both

8(b)	Use of $\csc^2 \theta = 1 + \cot^2 \theta$	B 1	May be implied by later work
	$\csc^{2}\theta = 1 + \frac{(2+\sqrt{3})^{2}}{(\sqrt{3}-1)^{2}}$	M1	For attempting to deal with tan correctly, forming a single fraction and simplifying, with sufficient detail – at least 4 terms in the numerator
	$\operatorname{cosec}^2 \theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}}$	A1	
	$\csc^{2}\theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}} \times \frac{4 + 2\sqrt{3}}{4 + 2\sqrt{3}}$	M1	For attempt to rationalise <i>their</i> expression, with sufficient detail in the simplification of the numerator – at least 3 terms
	$14 + \frac{15\sqrt{3}}{2}$	A1	
	Alternative 1	(B1)	
	Use of $\csc^2 \theta = 1 + \cot^2 \theta$		May be implied by later work
	$\cot \theta = \frac{2 + \sqrt{3}}{\sqrt{3} - 1}$ $= \frac{3\sqrt{3} + 5}{2}$	(2)	M1 for attempting to rationalise $\cot \theta$ or tan with sufficient detail in the simplification of the numerator – at least 3 terms
	$\operatorname{cosec}^{2} \theta = 1 + \left(\frac{3\sqrt{3} + 5}{2}\right)^{2}$ $= 14 + \frac{15\sqrt{3}}{2}$	(2)	M1 for expressing as a single fraction and attempt to simplify to required form.


8(b)	Alternative 2	(B1)	
	Use of $\operatorname{cosec}^2 \theta = 1 + \cot^2 \theta$ and $\cot^2 \theta = \frac{1}{\tan^2 \theta}$		May be implied by later work
	$\tan^2 \theta = \frac{4 - \sqrt{3}}{7 + 4\sqrt{3}}$ $= 52 - 30\sqrt{3}$	(2)	M1 for attempting to rationalise $\tan^2 \theta$ with sufficient detail in the simplification of the numerator – at least 3 terms
	$\operatorname{cosec}^{2} \theta = 1 + \left(\frac{1}{52 - 30\sqrt{3}}\right)^{2}$ $= 14 + \frac{15\sqrt{3}}{2}$	(2)	M1 for attempting to rationalise $\cot^2 \theta$ with sufficient detail in the simplification of the numerator – at least 3 terms and expressing as a single fraction and attempt to simplify to required form.
	Alternative 3	(2)	
	Use of right-angled triangle Hyp ² = $11 + 2\sqrt{3}$		M1 For attempt to calculate the square of hypotenuse
	$\operatorname{cosec}^2 \theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}}$	(B1)	for correct use of $\csc^2 \theta$ with <i>their</i> squared hypotenuse
	$\csc^2 \theta = \frac{11 + 2\sqrt{3}}{4 - 2\sqrt{3}} \times \frac{4 + 2\sqrt{3}}{4 + 2\sqrt{3}}$	(M1)	For attempt to rationalise <i>their</i> expression, with sufficient detail in the simplification of the numerator – at least 3 terms
	$14 + \frac{15\sqrt{3}}{2}$	A1	

	more topical past papers and revision notes visit exambuddy.org					
60.	1	<i>a</i> = 5 B1				
		<i>b</i> = 4	B1			
		<i>c</i> = -3	B1			

61.	2	$ \tan^2 \theta = \frac{1}{y+2} \text{ soi or } x = 1 + \tan^2 \theta \text{ soi} $	B1	Must be in terms of $\tan^2 \theta$
		Use of $\tan^2 \theta + 1 = \sec^2 \theta$ $\frac{1}{y+2} + 1 = x \text{ oe}$	M1	For a valid attempt to eliminate θ
		$y = \frac{1}{x-1} - 2$ or $y = \frac{3-2x}{x-1}$ oe	2	Dep M1 for attempt to rearrange to obtain in the required form A1 for a correct form
		Alternative		
		$x = \frac{1}{\cos^2 \theta}$ and $y + 2 = \frac{\cos^2 \theta}{\sin^2 \theta}$ soi	(B1)	
		$y+2 = \frac{\frac{1}{x}}{1-\frac{1}{x}}$ oe	(M1)	For a valid attempt to eliminate θ , making use of $\sin^2 \theta + \cos^2 \theta = 1$
		$y = \frac{1}{x-1} - 2$ or $y = \frac{3-2x}{x-1}$ oe	(2)	Dep M1 for attempt to rearrange to obtain in the required form A1 for a correct form

2.	1	<i>a</i> =2	B1	
		<i>b</i> =3	B 1	
		<i>c</i> = -4	B 1	

63.	4	$\tan\left(2x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ or $\sin^2\left(2x + \frac{\pi}{4}\right) = \frac{1}{4}$ or $\cos^2\left(2x + \frac{\pi}{4}\right) = \frac{3}{4}$	B1	Must be from correct working Allow if $\theta = 2x + \frac{\pi}{4}$ oe
		$2x + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{7\pi}{6}, \frac{13\pi}{6}$ $x = -\frac{\pi}{24}$	M1	Dep on previous B1 For attempt at the correct order of operations, may be implied by a correct solution or $x = -\frac{\pi}{24}$.
		$x = \frac{11\pi}{24} \text{ or } \frac{23\pi}{24} \text{ oe}$ 0.458\pi or 0.958\pi 1.44 or 3.01	2	Dep M1 for an attempt to find a solution within the given range. Must be working with $\frac{7\pi}{6}$ or $\frac{13\pi}{6}$ A1 for either
		$x = \frac{11\pi}{24} \text{ or } \frac{23\pi}{24} \text{ oe}$ 0.458\pi or 0.958\pi 1.44 or 3.01	A1	For a second solution within the given range with no extra solutions within the range.

65.	10	$\tan(3x + 1.2) \left[= \frac{1}{\sqrt{2}} \right]$ or $\cos^2(3x + 1.2) \left[= \frac{2}{3} \right]$ or $\sin^2(3x + 1.2) \left[= \frac{1}{3} \right]$	M1	For an attempt to obtain an equation in $\sin(3x + 1.2)$, $\cos(3x + 1.2)$ or $\tan(3x + 1.2)$
		<i>x</i> = −1.24, −0.195, 0.852 or better	4	M1 dep for a correct attempt to obtain one correct solution A1 for one correct solution in the range M1 dep for an attempt to obtain another solution within the range A1 for 2 more correct solutions within the range and no extra solutions within the range

66.	7(a)	$\frac{\sin^2 x + (1 - \cos x)^2}{(1 - \cos x)\sin x}$ or $\frac{\sin^2 x}{(1 - \cos x)\sin x} + \frac{(1 - \cos x)^2}{(1 - \cos x)\sin x}$	M1	
		$\frac{\sin^2 x + 1 - 2\cos x + \cos^2 x}{(1 - \cos x)\sin x}$	A1	OR $\frac{1 - \cos^2 x + (1 - \cos x)^2}{(1 - \cos x)\sin x}$
		$\frac{1+1-2\cos x}{(1-\cos x)\sin x}$ or $\frac{1-\cos^2 x+1-2\cos x+\cos^2 x}{(1-\cos x)\sin x}$	A1	OR $\frac{(1-\cos x)(1+\cos x)+(1-\cos x)^2}{(1-\cos x)\sin x}$
		Fully correct justification of given answer: $\frac{2(1 - \cos x)}{(1 - \cos x)\sin x} = 2\csc x$ or $\frac{2 - 2\cos x}{(1 - \cos x)\sin x} = \frac{2}{\sin x} = 2\csc x$ or equivalent	A1	All steps correct and final step justified OR $\frac{1 + \cos x + 1 - \cos x}{\sin x} = 2 \csc x$

Alternative		
$\frac{\sin x(1+\cos x)}{(1-\cos x)(1+\cos x)} + \frac{(1-\cos x)\sin x}{\sin x \sin x}$ or $\frac{\sin x(1+\cos x)}{1-\cos^2 x} + \frac{(1-\cos x)\sin x}{\sin^2 x}$	(M1)	
$\frac{\sin x + \sin x \cos x}{\sin^2 x} + \frac{\sin x - \cos x \sin x}{\sin^2 x}$	(A1)	
$\frac{2\sin x}{\sin^2 x}$	(A1)	
Fully correct justification of given answer: $\frac{2}{\sin x} = 2 \operatorname{cosec} x$	(A1)	All steps correct and final step justified

Question	Answer	Marks	Guidance
7(b)	$3\sin^2 x - \sin x - 2 [=0]$ soi	B1	
	$(3\sin x + 2)(\sin x - 1) = 0$ oe	M1	
	$\sin x = -\frac{2}{3}, \ \sin x = 1$	A1	
	90 221.8 or 221.81[03] rot to 2 or more dp 318.2 or 318.18[96] rot to 2 or more dp	A1	and no extras in range If B1 M1 A0 A0 allow SC1 for 221.8 or 221.81[03] rot to 2 or more dp and 318.2 or 318.18[96] rot to 2 or more dp and no extras in range

67.	5(a)	$\frac{\cos^2 x + (1 - \sin x)^2}{(1 - \sin x)\cos x}$ or $\frac{\cos^2 x}{(1 - \sin x)\cos x} + \frac{(1 - \sin x)^2}{(1 - \sin x)\cos x}$	M1	Correctly takes common denominator
		$\frac{\cos^2 x + 1 - 2\sin x + \sin^2 x}{(1 - \sin x)\cos x}$	A1	OR $\frac{1 - \sin^2 x + (1 - \sin x)^2}{(1 - \sin x)\cos x}$
		$\frac{1+1-2\sin x}{(1-\sin x)\cos x}$ or $\frac{1-\sin^2 x+1-2\sin x+\sin^2 x}{(1-\sin x)\cos x}$	A1	OR $\frac{(1-\sin x)(1+\sin x)+(1-\sin x)^2}{(1-\sin x)\cos x}$
		$\frac{2(1-\sin x)}{(1-\sin x)\cos x} = 2\sec x$ or $\frac{2-2\sin x}{(1-\sin x)\cos x} = \frac{2}{\cos x} = 2\sec x$ or equivalent	A1	All steps correct and final step justified OR $\frac{1+\sin x+1-\sin x}{\cos x} = 2 \sec x$
		Alternative Must work with LHS only		
		$\frac{(\cos x)(1+\sin x)}{(1-\sin x)(1+\sin x)} + \frac{(1-\sin x)\cos x}{(\cos x)\cos x}$	(M1)	Forms fractions with common denominator in different form
		$\frac{(\cos x)(1+\sin x)}{\cos^2 x} + \frac{(1-\sin x)\cos x}{\cos^2 x}$	(A1)	Uses difference of two squares and $\sin^2 x + \cos^2 x = 1$ to write fractions with a common denominator in the same form
		$\frac{2\cos x}{\cos^2 x}$	(A1)	Combine as a single fraction and collects terms
		$\frac{2}{\cos x} = 2 \sec x$	(A1)	All steps correct and final step justified

5(b)

$$cos^{3} \frac{\theta}{2} = \frac{1}{4}$$

$$rac{0}{1}$$

$$cos \frac{\theta}{2} = \sqrt[3]{their \frac{1}{4}} \text{ soi}$$

$$\frac{M1}{2}$$

$$dep \text{ on starting with } 2sec \frac{\theta}{2} = 8cos^{2} \frac{\theta}{2}$$

$$\frac{\pm 101.9 \text{ awrt}}{1}$$

$$\frac{A2}{A1}$$

$$rac{and no extras in range}{A1 \text{ for either, ignoring extras in range}}$$

$$If A0 \text{ then SC1 for } \pm 102 \text{ with no}}$$

$$extras in range$$

68.

6(a)	$\frac{\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}}{\frac{1}{\cos\theta}} \text{ soi}$	2	B1 for tan θ and cot θ in terms of sin and cos. B1 for $\sec \theta = \frac{1}{\cos \theta}$
	$\frac{\cos^2\theta + \sin^2\theta}{\sin\theta\cos\theta} \times \cos\theta \text{ soi oe}$	M1	For dealing with the fractions in the numerator.
	$\frac{1}{\sin\theta} \times \csc\theta \ \cos\theta$	A1	For correct use of $\cos^2 \theta + \sin^2 \theta = 1$ to obtain the given answer.
	$\frac{\frac{1}{\tan\theta} + \tan\theta}{\frac{1}{\cos\theta}} = \frac{1 + \tan^2\theta}{\tan\theta} \times \cos\theta \text{ soi oe}$	(2)	B1 for sec $\theta = \frac{1}{\cos \theta}$ M1 for dealing with the fractions in the numerator.
	$\frac{\sec^2\theta}{\tan\theta}\times\cos\theta$	(B1)	For correct use of $\tan^2 \theta + 1 = \sec^2 \theta$
	$\frac{1}{\sin\theta} \times \csc\theta \ \cos\theta$	(A1)	For correct use of tan θ and sec ² θ to obtain the given answer.

6(b)	$\left(\right)^{2}$	B2	B1 for ± missing
	$\left(\frac{1}{\sin\frac{\phi}{3}}\right) = 2 \text{ or } \sin\frac{\phi}{3} = \pm\frac{1}{\sqrt{2}} \text{ soi or}$		
	$\tan\frac{\phi}{3} = \pm 1$ soi		
	-405°, -135°, 135°, 405°	4	M1 for one correct positive or negative $\frac{1}{2}$
			solution of <i>their</i> $\sin\frac{\phi}{3} = k$
			A1 for another correct solution
			M1Dep for one negative or positive solution
			A1 for another correct solution and no extras in the range.

69.	1	<i>a</i> = 4	B1	
		$b=\frac{3}{8}$ oe	B1	
		<i>c</i> = -2	B1	

70.	6(a)	A correct equation in terms of x and y only	B1	No inverse trig functions
		$y = (x-4)^2 - 3$ or $y = x^2 - 8x + 13$	B1	
	6(b)	$\sin\left(2\phi + \frac{3\pi}{4}\right) = \frac{\sqrt{3}}{2} \text{soi}$	B 1	May be implied by one correct solution
		$-\frac{5\pi}{24}$, $-\frac{\pi}{24}$, $\frac{19\pi}{24}$, $\frac{23\pi}{24}$ with no extra solutions within the range	4	M1 for explicitly correct order of operations from $their\left(2\phi + \frac{3\pi}{4}\right) = k$, or may be implied by one correct solution A1 for two correct solutions A1 for a third correct solution A1 for a further solution with no extra solutions in the range

2(a)	Correct curve 10 0 30 60 90 120 x -10	3	 B2 for correct cosine shape over 2 cycles with midline at y = 2 and consistent amplitude or B1 for attempt at cosine shape over 2 cycles with consistent amplitude B1 for a consistent amplitude of 2; must have attempted correct shape Maximum of 2 marks if not fully correct
2(b)	4	1	
2(c)	60°	1	

72.	5	$\cos\left(2\theta + \frac{\pi}{6}\right) = (\pm)\frac{\sqrt{3}}{2} \text{ oe}$ or $\tan\left(2\theta + \frac{\pi}{6}\right) = (\pm)\frac{1}{\sqrt{3}} \text{ oe}$	B1	
		$\theta = -\frac{\pi}{6}, 0, \frac{\pi}{3}$ oe	4	 M1 for a correct order of operations, may be implied by one correct solution. A1 for 1 correct solution. A1 for a 2nd correct solution A1 for a 3rd correct solution with no extra solutions in the range. All solutions must be from correct working.
73.	3		360° x	 4 B1 for a correct shape, starting in approximately correct places between -2 and -3 and finishing in approximately correct places between 0 and 1, having an amplitude of 2 and crossing the <i>x</i>-axis only once, on the positive <i>x</i>-axis. B1 for a correct shape and (0, -1) B1 for a correct shape and a max and a min in approximately correct places. (270°,1) and (-270°,-3) B1 for a correct shape crosses at (90°,0)

74.	12	$\sin\left(\frac{2x}{3} - \frac{\pi}{3}\right) = \pm \frac{\sqrt{3}}{2}$ or $\tan\left(\frac{2x}{3} - \frac{\pi}{3}\right) = \pm \sqrt{3}$	B1	Allow if ± is missing
		$x = \pi, \frac{3\pi}{2}, \frac{5\pi}{2}, 3\pi$	4	M1dep on B1 for obtaining $\frac{2x}{3} - \frac{\pi}{3} = \frac{\pi}{3}$ or any valid value A1 for one correct solution A1 for a 2nd correct solution A1 for a 3rd and 4th correct solutions and no extras in the range

75.	Question	Answer	Marks	Guidance
	10(a)	Writes cotx and tanx in terms of sinx and cosx: $\frac{\sin x}{1 - \frac{\cos x}{\sin x}} + \frac{\cos x}{1 - \frac{\sin x}{\cos x}}$	M1	$\frac{\operatorname{Sin} x \left(1 - \frac{\sin x}{\cos x}\right) + \cos x \left(1 - \frac{\cos x}{\sin x}\right)}{\left(1 - \frac{\cos x}{\sin x}\right) \left(1 - \frac{\sin x}{\cos x}\right)}$
		Simplifies denominator: $\frac{\frac{\sin x}{\sin x - \cos x}}{\frac{\sin x - \cos x}{\sin x}} + \frac{\frac{\cos x}{\cos x - \sin x}}{\frac{\cos x}{\cos x}}$	A1	$\frac{\operatorname{sin} x \left(\frac{\cos x - \sin x}{\cos x} \right) + \cos x \left(\frac{\sin x - \cos x}{\sin x} \right)}{\left(\frac{\sin x - \cos x}{\sin x} \right) \left(\frac{\cos x - \sin x}{\cos x} \right)}$
		Writes as two simple algebraic fractions: $\frac{\sin^2 x}{\sin x - \cos x} + \frac{\cos^2 x}{\cos x - \sin x}$	A1	OR writes as a single simple algebraic fraction: $\frac{\sin^2 x(\cos x - \sin x) + \cos^2 x(\sin x - \cos x)}{(\sin x - \cos x)(\cos x - \sin x)}$
		Writes as a difference with a common denominator: $\frac{\sin^2 x}{\sin x - \cos x} - \frac{\cos^2 x}{\sin x - \cos x}$	A1	$OR \frac{\sin^2 x(\cos x - \sin x) - \cos^2 x(\cos x - \sin x)}{(\sin x - \cos x)(\cos x - \sin x)}$
		Correct simplification to given answer, e.g., $\frac{(\sin x - \cos x)(\sin x + \cos x)}{(\sin x - \cos x)} = \sin x + \cos x$ or $\frac{(\sin x - \cos x)(\sin x + \cos x)}{(\sin x - \cos x)} [= \sin x + \cos x]$	A1	All steps correct and final step fully justified by factorising

Question	Answer	Marks	Guidance
10(b)	$10\cos^2 x + 3\cos x - 1[=0]$ or $\sec^2 x - 3\sec x - 10[=0]$	B2	B1 for $\frac{9\cos x}{\sin x} + \frac{3}{\sin x} = \frac{\sin x}{\cos x}$ or better or $9 + \frac{3\tan x}{\sin x} = \tan^2 x$ or better OR M1 for one sign error in $10\cos^2 x + 3\cos x - 1[=0]$ or $\sec^2 x - 3\sec x - 10[=0]$
	$(5\cos x - 1)(2\cos x + 1)[= 0]$ or $(\sec x - 5)(\sec x + 2)[= 0]$	M1	FT <i>their</i> 3-term quadratic in cosx or secx
	$[\cos x = \frac{1}{5} \text{ and } \cos x = -\frac{1}{2}$ OR $\sec x = 5 \text{ and } \sec x = -2 \text{ leading to}]$ 78.5 or 78.46[30] rot to 2 or more dp 281.5 or 281.53[69] rot to 2 or more dp 120 240 and no extras in range 0 < x < 360	A2	A1 for any two correct angles [found using $\cos x = \frac{1}{5}$ and $\cos x = -\frac{1}{2}$ OR $\sec x = 5$ and $\sec x = -2$]; ignore extras