Rate =	Change in the amount of reacto	
	Time	
ffect of temper	ature ature	
Rate of real	action increases with temperature	
	ave more kinetic energy.	
	of collision increases	
 Number of 	effective collision increases·	
iple		
(a(0) + 2	$2HCI \longrightarrow CaCl_2 + H_2O + C$	0,
	600.3	
209	1.0 moldas	
powder		
Exp-1 at 30°C	 	
xp-2 at 40°		
1	Exp-2	
dune /	/ Fxp-1	
of of		
02 //		
<u> </u>	Time	
• Due to inci	rease of temperature, more particles (react	ants) have energy greater (or equal)
than the a	ctivation energy·	
• Change in t	semperature cannot change the value of the	2 JH.
ffect of concent	ration	
1. Rate of rea	action increases with the increase of concen	tration of the reactants.
2. Increasing t	he concentration of the reactants cannot i	ncrease the kinetic energy of particles.
	more particles per unit volume·	
	ncy of collision increases:	
5. The number	r of successful collision increases.	
		
xamples:		Exp-2
		+
2 H202 ($\frac{M_n O_2}{2} \approx 2 H_2 O_{\uparrow} O_{2(g)}$ Volume	

(EXP-(1)

Time

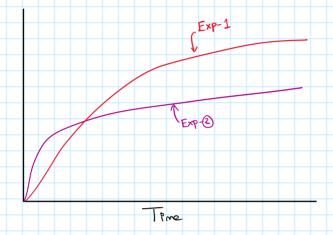
Exp(1)

Exp2

2 H2Oz (ag) MnOz 2 H2O+ Oz (g)
200cm 05 moldm3

Effect of surface area (For solid reactants only)

- Rate of reaction increases with the increase of surface area of the solid reactant.
- · More reactants are exposed to react
- · Frequency of collision increases.
- · Number of effective collision increases.

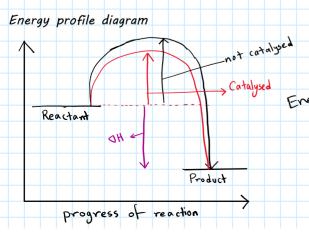

Examples:

CaCO3 + 2 HCl -> CaCl2+ H2O+ CO2

Exp: 1 >> 20g large size

Exp: 2 > 10g powder

Volume


Effect of pressure

- · Rate of reaction increases with the increase of pressure.
- Gas molecules are much more closer.
- · Frequency of collision increases.
- · Number of effective collision increases.

Catalyst

- Substances that can speed up a chemical reaction by lowering the activation energy by creating an alternative route are called catalysts.
- Catalyst cannot change the value of ΔH·
- Catalyst cannot provide energy to the reactant.
- Catalyst cannot change equilibrium composition.
- Catalyst cannot change the yield of the reaction.

(repos)

Catalysed Product

Reactant

Progress of reaction

Reactant and catalyst exists in the same physical state.

Examples:

Oxidation of 50,

Homogeneous catalyst

$$SO_2 + \frac{1}{2}O_2 \xrightarrow{NO_2} SO_3$$
 Here NO_2 is acting as a catalyst.
 $SO_2 + NO_2 \longrightarrow SO_3 + NO$

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$

Reaction of persulfate

$$S_2 O_8^{2^-} + 2 I^- \xrightarrow{F_e^{3+}} 2 S O_4^{2^-} + I_{2(\alpha_9)}$$
(persulfate)

- Both reactants are negatively charged.
- · So, high activation energy is needed.
- · The reactants repel each other.
- Without the catalyst (Fe^{3+}) the reaction between $S_2 O_8^{2-}$ and I^- is very slow-
- To overcome the repulsion between two reactants the catalyst is used.

Steps of the reaction:

$$2 I^{-} + 2 Fe^{3+} \longrightarrow 2 Fe^{2+} + I_{\perp}$$

$$2 Fe^{2+} + S_{2}O_{8}^{2-} \longrightarrow 2SO_{4}^{2-} + 2Fe^{2+}$$

$$2 I^{-} + S_{2}O_{8}^{2-} \longrightarrow I_{1} + 2SO_{4}^{2-}$$

Heterogenous catalyst

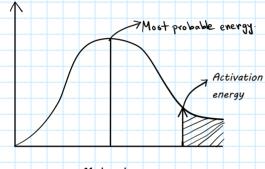
Reactants and catalyst exist in different physical state.

Examples:

Contact process-
$$2 SO_{2(g)} + O_2 \frac{V_2O_3}{V_450^\circ C} 2SO_3$$

Reaction in a catalytic converter $2N0 + 2C0 \xrightarrow{Rh \& Pt} 2CO_2 + N_2$

Hydrogenation of alkene- $CH_2CH_2+H_2 \xrightarrow{N_1^{\circ}} CH_3CH_3$


Decomposition of hydrogen peroxide-

Enzymes

- Enzymes are biological catalyst.
- · Enzymes can speed up a biological chemical reaction·
- It is specific for a particular reaction.
- · Reactants are called substrates.
- · Enzymes lower the activation energy.
- Substrate bind to the active site of the enzyme.
- After the reaction the enzymes are reformed.
- T higher temperature the enzymes get denatured and cannot catalyze a reaction.
- Active site is also denatured due to change in pH.

Boltzmann distribution

The effect of temperature on the rate of reaction.

Molecular energy

- · Area under the curve represents total number of molecules.
- The most probable energy is the energy that maximum amount of molecules have
- The shaded area shows the proportion of molecules in the samples that have enough energy to cause a chemical reaction when they collide: