For more topical past papers and revision notes visit exambuddy.org

1	
•	•

			<u> </u>
5(i)	$^{10}C_4 = 210$	B1	
5(ii)	2 Mystery 2 others = ${}^{5}C_{2} \times {}^{5}C_{2} = 100$ 3 Mystery 1 other = ${}^{5}C_{3} \times {}^{5}C_{1} = 50$ 4 Mystery = ${}^{5}C_{4} = 5$ Total 155	В3	B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
	Alternative Method		
	All – 0 Mystery – 1 Mystery	B1	All minus 0 or 1 or both
	$=210-{}^{5}C_{4}-{}^{5}C_{1}^{5}C_{3}$	B1	B1dep 1Mystery and 0 mystery unsimplified
	$=210-5-5\times10=155$	B1	B1dep final answer
5(iii)	$2M1C1R = {}^{5}C_{2} \times {}^{3}C_{1} \times {}^{2}C_{1} = 60$ $1M2C1R = {}^{5}C_{1} \times {}^{3}C_{2} \times {}^{2}C_{1} = 30$ $1M1C2R = {}^{5}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{2}$ $= 15$ $Total 105$	В3	B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total

. 1				
2.	9(a)(i)	720	B 1	
	9(a)(ii)	240	B1	
	9(a)(iii)	$k \times 4! \times 2$ or $240 - k \times 4! \times 2$ or correct equivalents with no extra terms added or subtracted	B1	
		$4 \times 4! \times p$ or correct equivalents with no extra terms added or subtracted	B1	
		192	B1	
-	9(b)(i)	6435	B1	
	9(b)(ii)	With twins: $^{13}C_6$ or 1716 Without twins: $^{13}C_8$ or 1287	B2	B1 for ${}^{13}C_6$ or 1716 or ${}^{13}C_8$ or 1287 B1 for $({}^{13}C_6$ and ${}^{13}C_8)$ or (1716 and 1287) with no multiples and no extra terms
		Total: 1716 + 1287 = 3003	B1	3003 from a correct method

8(a)		B1	
8(b)(i)	${}^{2}C_{1} \times {}^{14}C_{10}$ oe (2 × 1001)	M1	Condone $\begin{pmatrix} 14\\4 \end{pmatrix}$ for $\begin{pmatrix} 14\\10 \end{pmatrix}$
	2002	A1	implies M1
8(b)(ii)	$ \left({}^{2}C_{1} \times {}^{5}C_{4} \times {}^{9}C_{6} \right) + \left({}^{2}C_{1} \times {}^{5}C_{5} \times {}^{9}C_{5} \right) \text{ oe } (840 + 252) $ $ {}^{2}C_{1} \times {}^{14}C_{10} - $ or $ \left({}^{2}C_{1} \times {}^{5}C_{1} \times {}^{9}C_{9} + {}^{2}C_{1} \times {}^{5}C_{2} \times {}^{9}C_{8} + {}^{2}C_{1} \times {}^{5}C_{3} \times {}^{9}C_{7} \right) $ $ \left\{ 2002 - (10 + 80 + 720) \right\} $	М3	M3 for fully correct method soi M2 for all necessary products but not summed with no extra products seen soi M1 for one correct three term product soi
	1092	A1	implies M3

1.	8(a)(i)	2520	B1	
	8(a)(ii)	360	B1	
	8(a)(iii)	1080	B1	
	8(a)(iv)	6 or 8 to start with No of ways = $2 \times 5 \times 4 \times 3 \times 2$ = 240	B1	
		9 to start with No of ways = $1 \times 5 \times 4 \times 3 \times 3$ = 180	B1	
		Total number of ways = 420	DB1	Dependent on both previous B marks

8(a)(iv)	Alternative 1		
	All numbers > 6000 - all odd numbers > 6000	B1	plan and attempt to use, must be using 1080
	1080 – 180 – 480	B1	for 180 and 480
	Total number of ways = 420	DB1	Dependent on both previous B marks
	Alternative 2		
	Even numbers > 60000 : Odd numbers > 60000 7 : 11	B1	correct ratio
	Total number of ways = $\frac{7}{18} \times 1080$	B1	
	= 420	DB1	Dependent on both previous B marks
8(b)(i)	480700	В1	
8(b)(ii)	26460	B1	
8(b)(iii)	With brother and sister $^{23}C_5 = 33649$	B1	for $^{23}C_5$ or $^{23}C_5 \times {}^kC_k$
	Without brother and sister $^{23}C_7 = 245157$	B1	for $^{23}C_7$ or $^{23}C_7 \times {}^kC_k$
	Total number of ways = 278806	B1	for $^{23}C_5 + ^{23}C_7$ and evaluation

5.	7(i)	167 960	1	
	7(ii)	evidence of selecting from 16	M1	
		$[^{16}C_7 =] 11 440$	A1	
	7(iii)	$2 \times {}^{n}$ C _r with $n = 16$ or $r = 9$	M1	
		$\left[2 \times^{16} C_{9} = \right] 22880$	A1	
	7(iv)	$4 \times {}^{n} C_{r}$ with $n = 16$ or $r = 9$	M1	
		$\left[4 \times^{16} C_9 = \right] 45760$	A1	

_	
c	
n	
•	

6(a)	Number first = $7 \times 6 \times 5 \times 6 \times 5$ or ${}^{7}P_{3} \times {}^{6}P_{2}$ or 6300	B1	
	Letter first $= 6 \times 5 \times 4 \times 7 \times 6 \text{ or } {}^{6}P_{3} \times {}^{7}P_{2} \text{or } 5040$	B1	
	6300 + 5040 = 11 340	B1	
6(b)	With 2 sisters = ${}^7C_5 \times {}^3C_2 = 63$ With 1 sister = ${}^7C_6 \times {}^3C_1 = 21$ With no sister = ${}^7C_7 = 1$ and Total 85	3	B1 One combination evaluated B1Another combination evaluated B1 Third combination and 85
	OR		
	Total no of ways = ${}^{10}C_7 = 120$	B1	
	With 3 sisters = ${}^{7}C_4 = 35$	B1	
	Without 3 sisters = $120 - 35 = 85$	B1	

_	
7	
•	

5(a)	$^{7}P_{4}$ or $7 \times 6 \times 5 \times 4$ oe	M1	
	840	A1	
5(b)(i)	20	B1	
5(b)(ii)	${}^{5}C_{1} \times {}^{4}C_{1} \times {}^{2}C_{1}$ or $5 \times 4 \times 2$ oe	M1	
	40	A1	
5(b)(iii)	${}^{5}C_{3} + {}^{4}C_{3}$ oe	M1	
	14	A1	

	Ŀ	

3(i)	$\binom{12}{P_7} = 3991680$	B1	
3(ii)	$(4 \times {}^{11}P_6 =) 1330560$	B1	
3(iii)	4! × 4! × 2 oe	M2	M1 for $4! \times 4!$ oe only or ${}^4P_4 \times {}^4P_3$ oe only
	1152	A1	

9.	3(i)	$^{14}P_5$ or $14 \times 13 \times 12 \times 11 \times 10$	M1	
		240 240	A1	cao
	3(ii)	$^{3}P_{1} \times ^{5}P_{2} \times ^{6}P_{2} \text{ or } 3 \times (5 \times 4) \times (6 \times 5)$	M1	Two of the three elements multiplied by
		= 1800	A1	
	3(iii)	$^{6}P_{2} \times ^{8}P_{3} \text{ or } (6 \times 5) \times (8 \times 7 \times 6)$	M1	One element multiplied by Clear intention to multiply
		= 10 080	A1	

10.	7(a)(i)	15120	B1	
	7(a)(ii)	1680	B1	
	7(a)(iii) Method 1	Total = 2310	В3	B1 1st digit is 7 or 9 1680 or 210×8 B1 1st digit is 8 630 or 210×3
	7(a)(iii) Method 2	Total = 2310	ВЗ	B1 for 5th digit is 2,4 or 6 1890 or 210×9 B1 for 5 th digit is 8 420 or 210×2

Question	Answer	Marks	Guidance
7(b)(i)	3003	B1	
7(b)(ii)	28	B1	
7(b)(iii)	Total 1419	В3	B1 Including husband and wife 495 B1 Excluding husband and wife 924

11. OMITTED

. `		1		ı
•	9(a)(i)	39 916 800	B1	
	9(a)(ii)	5!×6! oe	M1	
		86 400	A1	
	9(b)(i)	${}^{5}C_{3} \times {}^{3}C_{1}$ oe	M1	
		30	A1	

6(a)(i)	40320	B1	
6(a)(ii)	No. of ways with maths books as 1 unit = 5! or $5 \times 4!$ or 5P_5 or 120	B1	
	No. of ways maths books can be arranged amongst themselves = $4!$ or 4P_4 or 24	B1	
	Total = $(5! \times 4! \text{ oe}) = 2880$	B1	
6(a)(iii)	No. of ways with maths books as 1 unit and geography books as 1 unit = $3!$ or 3P_3 or $3 \times 2!$ or 6	B1	
	No. of ways maths books can be arranged amongst themselves and geography books can be arranged amongst themselves $= 4! \times 3!$ or ${}^4P_4 \times {}^3P_3$ or 144	B1	
	Total = $(3! \times 4! \times 3! \text{ oe})$ = 864	B1	
6(b)(i)	$^{12}C_6 = 924$	B1	

Question		Answer	Marks	Guidance
6(b)(ii)	Eithe	r: 924 – ⁸ C ₆	M1	For <i>their</i> (i) – the number of teams of just men
		Total = 896	A1	
	Or:	5M 1W: ${}^{8}C_{5} \times {}^{4}C_{1}$ (= 224) 4M 2W: ${}^{8}C_{4} \times {}^{4}C_{2}$ (= 420) 3M 3W: ${}^{8}C_{3} \times {}^{4}C_{3}$ (= 224) 2M 4W: ${}^{8}C_{2} \times {}^{4}C_{4}$ (= 28)	M1	For a complete method
		Total = 896	A1	

14.	6(a)	3024	B1	
	6(b)	24	B1	
	6(c)	4 P ₂ × 5 P ₂	M1	4×3 × 5×4
		240 no isw	A1	
	6(d)	$^4P_1 \times ^8P_3$	M1	4 × 8×7×6
		13/1/ no isw	A 1	

15.	8(b)(i)	120	B1	
	8(b)(ii)	48	B1	
	8(b)(iii)	Starts with 7 or 9 24	B1	May be implied by 12 and 12
		Starts with 8 18	B1	
		42	B1	
		Alternative Ends with 3 18	(B1)	
		Ends with 7 or 9 24	(B1)	May be implied by 12 and 12
		42	(B1)	

16.	4(a)	${}^{5}C_{2} \times {}^{8}C_{4}$ oe	M1	
		700	A1	
	4(b)	$3 \times 6!$ oe	M1	
		2160	A1	

17.	4(a)(i)	720	B1	
	4(a)(ii)	600	B1	FT on their (i) $\times \frac{5}{6}$
	4(a)(iii)	Starting with 8: $1 \times 4 \times 3 \times 2 \times 1 = 24$	B1	
		Starting with 3, 5 or 7: $3 \times 4 \times 3 \times 2 \times 2 = 144$	M1	May be considering each case separately, need all three cases for M1
			A1	
		Total = 168	A1	
	4(a)(iii)	Alternative		
		Plan for adding numbers ending in 2 and numbers ending in 8	M1	
		Ending in 2: $\left(\frac{1}{6} \times 720\right) \times \frac{4}{5} = 96$	B1	Allow unsimplified
		Ending in 8: $\left(\frac{1}{6} \times 720\right) \times \frac{3}{5} = 72$	B1	Allow unsimplified
		Total = 168	A1	
	4(b)	${}^{n}C_{3}=6{}^{n}C_{2}$	B1	$\frac{n(n-1)(n-2)}{3!}$
		$\frac{n(n-1)(n-2)}{3!} = \frac{6n(n-1)}{2!}$	B1	$\frac{6n(n-1)}{2!}$
		n(n-1)[(n-2)-18]=0	M1	Valid attempt to solve, must have at least one previous B mark
		n = 20	A1	
	4(b)	Alternative		
		${}^{n}C_{3}=6{}^{n}C_{2}$	B1	For dealing with $(n-2)!$ and $(n-3)!$

Question	Answer	Marks	Guidance
6(a)	Either Starts with 8: 1680	B1	1680 must not be part of a product. May be implied by final answer
	Starts with 7 or 9: 2688	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 1 Starts with 7, 8 or 9 and ends in 1, 3 or 5: 3024	(B1)	Allow for 1008 three times May be implied by final answer
	Starts with 8 or 9 and ends in 7: 672 Starts with 7 or 8 and ends in 9: 672	(B1)	For both May be implied by final answer
	Total: 4368	(B1)	
	Or Alternative 2 13 ways of obtaining odd 5-digit numbers which start with 7, 8 or 9	(B1)	Needs to be part of a product. May be implied by final answer
	⁸ P ₃ ways of arranging the remaining 3 digits: 336	(B1)	Needs to be part of a product. May be implied by final answer
	$Total = 13 \times 336 = 4368$	(B1)	
	Or Alternative 3 Last digit is 7 or 9: 1344	B1	May be implied by final answer
	Last digit is 1, 3 or 5: 3024	B1	May be implied by final answer
	Total: 4368	B1	
	Or Alternative 4 ${}^{10}P_5 - ({}^{9}P_4 \times 7) - ({}^{8}P_3 \times 5) - ({}^{8}P_3 \times 4)$ $-({}^{8}P_3 \times 5)$	В2	Must be complete
	Total: 4368	B1	

6(b)	$\frac{n!}{(n-3)!3!} = \frac{2n!}{(n-2)!2!}$ soi	B1	
	(n-2)=6 soi	B2	Dep B1 on first B for $(n-2)$ soi Dep B1 on first B for 6 soi
	n=8	B1	Dep on previous B marks

8(Either Starting with a 6: 120 ways	B1	May be implied by final answer
	Starting with 5, 7 or 9: 540 ways	B1	May be implied by final answer
	Total 660	B1	
	Or Alternative 1 Ending with a 6: 180 ways	(B1)	May be implied by final answer
	Ending with 0 or 4: 480ways	(B1)	May be implied by final answer
	Total 660	(B1)	
	Or Alternative 2 11 ways of obtaining even 5-digit numbers which start with 5, 6, 7, 9	(B1)	For $11 \times k$ May be implied by final answer
	⁵ P ₃ ways of arranging remaining 3 digits: 60	(B1)	For $m \times 60$ where m is from an attempt to list all cases for first and last digits May be implied by final answer
	$11 \times 60 = 660$	(B1)	
	Or Alternative 3 Total arrangements ⁷ P ₅ minus (all odds + evens starting with 1 + evens starting with 0 or 4) = 2520 - (1440 + 180 + 240)	(B2)	For 2520 – (1440 + 180 + 240)
	660	(B1)	

Question	Answer	Marks	Guidance
8(b)	$\frac{n!}{(n-4)!4!} = \frac{6n!}{(n-2)!2!}$	B1	
	(n-2)(n-3) = 72	2	B1 for $(n-2)(n-3)$

20	
ZV.	

. [5(a)(i)	120	B1	
	5(a)(ii)	4×3×2×1×3 =72 odd numbers 60%	2	B1 for either: 72 or $4 \times 3 \times 2 \times 1 \times 3$ and no percentage, or $\frac{3}{5}$ and no percentage.
	5(b)	495	B1	
		495×70 (=34650)	B1	
		$\left(\frac{34650}{3!}\right) = 5775$	B1	

7(a)(i)	20160	B1	
7(a)(ii)	7200	2	B1 for ${}^{6}P_{4}$ or $6\times5\times4\times3(=360)$ for 'inner' characters or ${}^{5}P_{2}$ or $4\times5(=20)$ for 'outer' characters Must be part of a product
7(a)(iii)	360	2	B1 for 3P_3 or 3! or 6 for arrangements of symbols or 5P_3 or $5\times4\times3$ (= 60) for the digits Must be part of a product
7(b)	$\frac{n!}{(n-5)!5!} = \frac{6(n-1)!}{((n-1)-4)!4!}$	B1	May be implied by simplification e.g. $\frac{n!}{5!} = 6 \frac{(n-1)!}{4!}$ or $\frac{n(n-1)(n-2)(n-3)(n-4)}{(n-4)!}$

2.	6(a)(i)	720	B1	
	6(a)(ii)	480	B1	

Question	Answer	Marks	Guidance
6(a)(iii)	[Starts with 6 or 8]: 192	B1	
	[Starts with 9]: 72	B1	
	Total = 264	B1	
	Alternative [Ends with 9]:48	(B1)	
	[Ends with 1,3 or 5]:216	(B1)	
	Total = 264	(B1)	
6(b)	$\frac{45n!}{(n-4)!4!} = \frac{(n+1)(n+1)!}{((n+1)-5)!5!}$	B1	
	$45 = \frac{(n+1)^2}{5}$ leading to $15 = n+1 \text{ or } n^2 + 2n - 224 = 0$	M2	M1 for 15 M1 for $n + 1$ OR M1 for $n^2 + 2n - 224 = 0$ oe M1 for $(n-14)(n+16) = 0$
	n = 14 only	A1	

9(a)(i)	665 280	B1	
9(a)(ii)	221 760	B1	

Question	Answer	Marks	Guidance
9(b)	$8 \times 4 \times 3 \times 2 \times 1 \times 7$	M1	For either 8×7 or 4! or 24 as part of a product
	1344	A1	

24. 6 1144 3 B1 With the brothers: 220 or ¹²C₃
B1 Without the brothers: 924 or ¹²C₆

25. Question Guidance **Answer** Marks 6(a) 510 3 M2 for a fully correct method e.g. [starts with 5, 7, 9 and ends in 3 or two of 5, 7, 9] $3 \times 6 \times 5 \times 3$ or 270 [starts with 6, 8 and ends in 3,5,7, 9] $2 \times 6 \times 5 \times 4$ or 240 OR [ends with 3 and starts with 5, 6, 7, 8, $5 \times 6 \times 5 \times 1$ or 150 and [ends with 5, 7, 9 and starts with 6, 8 or two of 5, 7, 9] $4 \times 6 \times 5 \times 3$ or 360 or M1 for a partially correct method equivalent to one of the above two steps 3 M2 for a fully correct method 6(b)540 e.g. [starts with 5, 7 and ends with 2, 3 and 5 or 7] $2 \times 6 \times 5 \times 3 = 180$

and

Istarts with 6, 8, 9 and ends with 2, 3,

. [6(a)(i)	$6 \times 6 \times 5 \times 4 \times 3$ oe	M1	
		2160	A1	
	6(a)(ii)	Full correct calculation (360 + 900) 'how many end with 0'+ 'how many end with 2, 4, 6' oe	M2	M1 for any correct product soi Eg $(6 \times 5 \times 4 \times 3 \times 1)$ or 360 $(5 \times 5 \times 4 \times 3 \times 1)$ or 300 $(5 \times 5 \times 4 \times 3 \times 3)$ or 900
		1260 cao	A1	
	6(b)	$^{15}C_7 - ^9C_7$	M1	
		6399	A1	

Question	Answer	Marks	Partial Marks
6(c)(i)	$\frac{n!}{(n-3)!3!} + \frac{n!}{(n-2)!2!}$	B2	B1 for either expression correct
	$\frac{n(n-1)(n-2)}{6} + \frac{n(n-1)}{2}$	M2	M1 for either expression correct
	$\frac{n(n-1)(n-2+3)}{6}$ or $\frac{n^3 - 3n^2 + 2n}{6} + \frac{3n^2 - 3n}{6}$ leading to $\frac{1}{6}(n^3 - n)$	A1	
6(c)(ii)	$n(n^2 - 25) = 0$ oe	M1	
	n = 5 as the only solution	A1	

27.	
-----	--

8(a)	With the sisters: 70 or ${}^{8}C_{4}$ oe	B1	
	Without the sisters: 28 or 8C_6 oe	B1	
	Total: 98	B1	
8(b)(i)	60480	B1	
8(b)(ii)	The start of the password and the end of the password can each be chosen 6 ways	B 1	6 or ³ P ₂ oe seen twice
	The remaining characters can be chosen in 20 ways	B1	20 or ⁵ P ₂ oe seen
	Total number of ways: 720	B1	

7(a)	¹⁴ C ₂ × ¹² C ₃ × ⁹ C ₄ oe, soi 2 522 520	3	B1 for a product of 3 combinations (ignore combinations that are equal to 1), one of which must be in the form $^{14}C_k$ where $k = 2, 3, 4, 5, 9, 10, 11, 12$ B2 for a correct product of combinations
7(b)(i)	136 080	B1	
7(b)(ii)	15 120	B1	
7(b)(iii)	38 640	3	B1 for ${}^{8}P_{4}$ or 1680 or $(8 \times 7 \times 6 \times 5)$ B2 for $8 \times {}^{8}P_{4}$ (13 440) oe or $15 \times {}^{8}P_{4}$ (25 200) oe

-	7(a)(i)	6435	B1	Must be evaluated not just $^{15}C_8$
	7(a)(ii)	With family of 4: 330	B1	Must be evaluated not just ${}^{11}C_4$ or implied by a correct answer
		Without family of 4: 165	B1	Must be evaluated not just ${}^{11}C_8$ or implied by a correct answer
		Total: 495	B 1	
	7(b)	$\frac{(n+9)\times n!}{(n-10)!} = \frac{(n^2+243)(n-1)!}{(n-1-9)!}$ $n(n+9) = n^2 + 243 \text{ oe}$	2	B1 for either ${}^{n}P_{10} = \frac{n!}{(n-10)!}$ or ${}^{n}P_{10} = \frac{(n-1)!}{(n-1-9)!}$

For more topical past papers and revision notes visit exambuddy.org						