- Vertical column is called group.
- Horizontal column is called period.
- In the periodic table, columns are arranged according to increasing atomic number (proton number).
- Electronic configuration can be used to identify group numbers, period numbers, metal or non-metal·

eriod

- Group number indicate number of electrons in the outermost shell·
- Period number indicate number of energy shells.
- In the periodic table, left to right atomic radius decreases.
- Group 1, 2 &3 elements are metallic·
- Group 4,5 &6 elements are non-metallic
- Metallic elements donate electrons to make positively charged ions called cations.
- Non-metallic elements gain or share electrons.
- Non-metallic elements gain electron to make negatively charged ions called anions·
- Elements between group 2 and 3 are called transition elements.

How to identify charge from group number:

 $\begin{array}{c} Group \ 1 & \longrightarrow +1 \\ Group \ 2 & \longrightarrow +2 \\ Group \ 3 & \longrightarrow +3 \\ Group \ 4 & \longrightarrow +4 \\ Group \ 5 & \longrightarrow -3 \\ Group \ 6 & \longrightarrow -2 \\ Group \ 7 & \longrightarrow -1 \end{array}$ 

- Group 1 metals are called alkaline metal·
- Group 2 metals are called alkaline earth metals·
- Group 7 elements are called halogen·
- Group & elements are called noble gas·

#### Oxides

- Oxides are binary compound.
- Binary compounds contain two types of elements.
- One of the element is oxygen.
- The other element is a metal or a non-metal or a metalloid·

# Basic oxide

- Metallic oxides are called basic oxide.
- Basic oxides react with acid only.

# Amphoteric oxide

• ZnO, Al<sub>2</sub>O<sub>3</sub> and PbO are amphoteric oxides.

# Acidic oxides

- Non-metallic oxides which can react with bases are called acidic oxides·
- Non-metallic which cannot react with base are called neutral oxides·
- Non-metallic oxides cannot react with water to make acidic solution  $\cdot$
- Acidic oxides react with water to make acidic solution  $\cdot$

| Alkaline metals                  |                                                  |
|----------------------------------|--------------------------------------------------|
|                                  |                                                  |
| Li                               | 1. Metallic character increases                  |
| Na                               | 2. Melting point decreases                       |
| V                                | 3. Reactivity increases                          |
| 4                                | 4. Density increases                             |
| Rp                               | 5. Atomic radius increases                       |
| C3<br>Fry                        | 6· Reducing power increases                      |
| ··· •                            |                                                  |
|                                  |                                                  |
| <ul> <li>Group I elem</li> </ul> | ents are called alkaline metals.                 |
| • Group I elem                   | ents react with water to make alkaline solution. |

- They react with water to make metal hydroxide solution and hydrogen gas·
- Alkaline solutions contain hydroxide ions.

## **Reactions:**

1. Lithium

$$2\operatorname{Li}_{(5)} + 2\operatorname{H}_{2}O_{(k)} \longrightarrow 2\operatorname{Li}O\operatorname{H}_{(a_{2})} + \operatorname{H}_{2(\mathfrak{g})}$$

# Observations:

- Bubbles of colorless gas are formed·
- The metal floats on the surface of water·
- Red color flame is observed.
- Lithium melts∙
- Lithium dissolves in water·

# 2∙ Sodium

# $2 \operatorname{Na}_{(1)} + 2 \operatorname{H}_{2} O_{(1)} \longrightarrow 2 \operatorname{Na}OH + \operatorname{H}_{2} (g)$

# Observations:

- Bubbles of colorless gas are formed
- The metal floats on the surface of water·
- Yellow flame is produced(orange or golden yellow flame)·
- Sodium melts
- Sodium dissolves in water·

# 3. Potassium

# $2K_{(s)} + H_2O_{(a)} \rightarrow KOH_{(ay)} + H_2_{(b)}$

# Observations:

- Bubbles of colorless gas are formed.
- The meatal floats on the surface of water·
- Lilac color flame is observed.
- Potassium melts·
- Potassium dissolves after reacting.

#### From lithium to francium atomic radius increases

- Electrons are added to the new energy shell
- Distance between the nucleus and the outermost shell increases

# From lithium to francium reactivity increases

- Reactivity of Group One elements depend on how easily they can donate electrons
- Electrons are added to the new energy shells
- The distance between the nucleus and the outermost electron decreases·
- It becomes easier to donate electrons

# From lithium to francium melting point decreases

- Charge on the ions is +1·
- Number of delocalized electrons is identical·
- From Li<sup>+</sup> to Fr<sup>+</sup> ionic radius decreases·
- The strength of electrostatic force of attraction between metal ions and delocalized electrons decreases
- Metallic bond becomes weaker·
- Less amount of heat energy is needed to break the metallic bond $\cdot$

## Physical properties of Group I metals

- They are ductile·
- They are malleable.
- They are soft and can be easily cut with a knife.
- They have low density.
- They have a low melting and boiling point.
- They conduct electricity and heat.

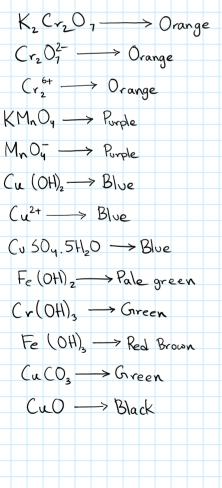
# Chemical properties of Group 1 metals

- React with water to make alkaline solution
- Cannot make colored compounds
- Fixed oxidation state
- Cannot be used as catalyst·
- Cannot make complex ions·

| Transition metals                                                  |                                 |
|--------------------------------------------------------------------|---------------------------------|
|                                                                    |                                 |
| Physical properties of transition metals Chemical properties of tr | ansition metals                 |
| • Ductile • Cannot react with                                      | water to make alkaline solution |
|                                                                    |                                 |
| • Malleable • Cannot make colore                                   | d compounds                     |
| Hard     They have a variabl                                       | a avidation state               |

- Have high density
  - They can be used as catalysts
- High melting and boiling point They can make complex ions•
- They conduct heat and electricity

| Name of process                           | Name of catalyst                            |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| Haber process (making of ammonia)         | Iron (Fe)                                   |  |  |  |  |  |  |  |
| Contact process (making of sulfuric acid) | V2O5 / vanadium peroxide/ vanadium(V) oxide |  |  |  |  |  |  |  |
| Decomposition of hydrogen peroxide        | Manganese (IV)oxide/ MnO2                   |  |  |  |  |  |  |  |
| Hydration of alkene                       | Phosphoric acid                             |  |  |  |  |  |  |  |
| Hydrogenation of alkene                   | Nickel                                      |  |  |  |  |  |  |  |


1) Fe2+, Fe3+

2 (r<sup>3+</sup>, Cr<sup>6+</sup>

3 Mn<sup>2+</sup>, Mn<sup>7+</sup>

④ \<sup>3+</sup> \<sup>5+</sup>

| Col | lor | of | e co | om | pol | una | ds . | 1 | ion. | s |  |  |  | lon | 5 | tha | t | hav | le. | var | rial | ble | ох | ida | tic | n | sta | ite |  |
|-----|-----|----|------|----|-----|-----|------|---|------|---|--|--|--|-----|---|-----|---|-----|-----|-----|------|-----|----|-----|-----|---|-----|-----|--|
|     |     |    |      |    |     |     |      |   |      |   |  |  |  |     |   |     |   |     |     |     |      |     |    |     |     |   |     |     |  |



#### Halogens

| Name of halogen | Molecular formula | Physical state | Color            |
|-----------------|-------------------|----------------|------------------|
| Fluorine        | F <sub>2</sub>    | Gas            | Yellow           |
| Chlorine        | Cl <sub>2</sub>   | Guess          | Green            |
| Bromine         | Br2               | Liquid         | Red/brown/orange |
| Iodine          | 12                | Solid          | Black            |
| Astatine        | At <sub>2</sub>   | Solid          | Shiny black      |
|                 |                   |                |                  |

| 2        | <ul> <li>Melting and boiling point increases</li> </ul> |
|----------|---------------------------------------------------------|
| <u> </u> | Color becomes darker                                    |
| $C_{1}$  |                                                         |
| n        | • Reactivity decreases                                  |
| Brz      | <ul> <li>Density increases</li> </ul>                   |
| I,       | <ul> <li>Oxidation power decreases</li> </ul>           |
| -12      |                                                         |
| At,      |                                                         |
|          |                                                         |

#### From Fluorine to Astatine melting and boiling point increases

- Number of electrons increase
- Strength of Van der Waal's force of attraction increases/ intermolecular force becomes stronger
- More heat energy is required to break the intermolecular force of attraction·

# From fluorine to astatine color becomes darker

- Number of electrons increases
- Strength of intermolecular force of attraction increases
- Molecule gets closer together

# From fluorine to Astatine reactivity decreases

- Reactivity of group 7 elements depends on how easily they can gain electrons·
- Atomic radius increases
- Attraction towards the incoming electron decreases

#### Displacement reaction

A more reactive halogen can displace a less reactive halogen from a compound. These reactions are called displacement reaction,

$$\bigcirc Cl_{2g_1} \mathsf{KBr}_{(a_2)} \longrightarrow \mathsf{KCl}_{(a_2)} + \mathsf{Br}_{2(a_2)}$$

Observation: colorless solution turns red brown

# 2 Brz(9) + KU (ag -> No reaction

As bromine is less reactive than chlorine it cannot replace chlorine.

$$\Im Cl_{2(9)} + 2KL \longrightarrow 2KCl_{(ag)} + J_{2(ag)}$$

Observation: colorless solution turns brown