. 1			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{e}^{4x}}{4} - x\mathrm{e}^{4x} \right) = \mathrm{e}^{4x} - \left(\left(x \times 4\mathrm{e}^{4x} \right) + \mathrm{e}^{4x} \right)$	B1	for $\frac{d}{dx} \left(\frac{e^{4x}}{4} \right) = e^{4x}$
		M1	for attempt to differentiate a product
		A1	for a correct product
	$=-4xe^{4x}$	A1	for correct final answer
	$\int_0^{\ln 2} x e^{4x} dx = -\frac{1}{4} \left[\frac{e^{4x}}{4} - x e^{4x} \right]_0^{\ln 2}$	B1FT	FT for use of their $\frac{1}{p} \times \left(\frac{e^{4x}}{4} - xe^{4x}\right)$, must be numerical p , but $\neq 0$
	$=-\frac{1}{4}\left(\left(\frac{16}{4}-16\ln 2\right)-\frac{1}{4}\right)$	B 1	for $e^{4\ln 2} = 16$
	$-\frac{1}{4}\left(\left(\frac{1}{4}\right)^{-10\ln 2}\right)^{-\frac{1}{4}}$	M 1	for correct use of limits, must be an integral
	$=4\ln 2 - \frac{15}{16}$	A1	of the correct form

•	6	$\frac{d}{dx} \left(e^{3x} \left(4x + 1 \right)^{\frac{1}{2}} \right)$ $= e^{3x} \frac{1}{2} \times 4 \left(4x + 1 \right)^{-\frac{1}{2}} + 3e^{3x} \left(4x + 1 \right)^{\frac{1}{2}}$	B1	for $re^{3x} (4x+1)^{-\frac{1}{2}}$ must be part of a sum, $r = \frac{1}{2}$ or 2 or $\frac{1}{2} \times 4$
			B1	for $se^{3x} (4x+1)^{\frac{1}{2}}$ must be part of a sum, s is 1 or 3
		$= \frac{2e^{3x}}{(4x+1)^{\frac{1}{2}}} + 3e^{3x}(4x+1)^{\frac{1}{2}}$	B1	for all correct, allow unsimplified
		$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(2+12x+3)$	DM1	for $\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(a+bx)$, dependent on first 2 B
		$=\frac{e^{3x}}{(4x+1)^{\frac{1}{2}}}(12x+5)$	A1	marks, must be using a correct method, collecting terms in the numerator correctly

_	

	I	ľ	1
7 (i)	$\cos 3x = \frac{1}{2}$, $x = \frac{\pi}{9}$ or 0.349, 20°, allow 0.35	M1 A1	for correct attempt to solve the trigonometric equation
(ii)	$B\left(\frac{\pi}{3}, 3\right)$ or $(1.05, 3), (60^{\circ}, 3)$	B1B1	B1 for each, must be in correct position or in terms of $r = $ and $v = $
(iii)	$\int_{\frac{\pi}{9}}^{\frac{\pi}{3}} 1 - 2\cos 3x dx = \left[x - \frac{2}{3} \sin 3x \right]_{\frac{\pi}{9}}^{\frac{\pi}{3}}$	M1 A1	for $x \pm a \sin 3x$ attempt to integrate at least one term for correct integration
	$=\frac{\pi}{3} - \left(\frac{\pi}{9} - \left(\frac{2}{3} \times \frac{\sqrt{3}}{2}\right)\right)$	DM1	for correct use of limits from (i) and (ii), must be in radians
	$=\frac{2\pi}{9} + \frac{\sqrt{3}}{3}$ oe or 1.28	A1	

9 (i)	$y = \frac{2}{3}(3x+10)^{\frac{1}{2}} (+c)$ passes through $\left(2, -\frac{4}{3}\right)$, so $c = -4$ $y = \frac{2}{3}(3x+10)^{\frac{1}{2}} - 4 \text{ oe}$	B1 B1 M1 A1	for $p(3x+10)^{\frac{1}{2}}$ where p is a constant for $\frac{2}{3}(3x+10)^{\frac{1}{2}}$ oe unsimplified for attempt to find c , must have attempt to integrate, must have the first B1
(ii)	When $x = 5$, $y = -\frac{2}{3}$ perpendicular gradient = -5 Equation of normal: $y + \frac{2}{3} = -5(x - 5)$	B1 B1 M1	for attempt at the normal using <i>their</i> perpendicular gradient and <i>their y</i> value (but not $y = -\frac{4}{3}$ or $-\frac{5}{3}$).
	When $y = -\frac{5}{3}$, $x = 5.2$ oe	DM1	for use of $y = -\frac{5}{3}$ in their normal equation to get as far as $x =$

11 (a) (i)	Distance = area under graph	M1	for attempt to find the area, one correct area seen (triangle, rectangle or trapezium) as part of a sum.
	= 1275	A1	a sum.
(ii)	deceleration is 1.5 oe	B1	
(b)		B1	for a straight line between (0,0) and (10,60)
		B1FT	FT a straight line between (10, 60) and
			$(20,90)$, a displacement vector $\begin{pmatrix} 10\\30 \end{pmatrix}$ from their
			(10, their 60)
(c) (i)	e^{2t} is always positive or oe	B1	
(ii)	$a = 8e^{2t}$ $e^{2t} = \frac{3}{2}$	M1	for attempt to differentiate, must be of the form pe^{2t} , equate to 12 and solve.
	$t = \frac{1}{2} \ln \frac{3}{2}$, $\ln \sqrt{\frac{3}{2}}$ or $\frac{1}{2} \ln 1.5$	A1	Allow fractions equivalent to $\frac{3}{2}$
(iii)	$s = \left[2e^{2t} + 6t\right]_{0.4}^{0.5}$ $= (2e+3) - \left(2e^{0.8} + 2.4\right)$ $(= 8.436 - 6.851)$ $= 1.59, \text{ allow } 1.58$	M1 A1	for attempt to integrate to get $qe^{2t} + 6t$ all correct
	$= (2e+3) - (2e^{0.8} + 2.4)$	DM1	for correct use of limits or considering distances
	(= 8.436 - 6.851)	A1	separately, ignore attempts at c
	=1.59, allow 1.58	AI	

6.

11 (i)	$\frac{3x^2}{2} - \frac{2x^{\frac{5}{2}}}{5} (+c)$ isw	B1+B1	
(ii)	(9, 0) oe	B1	Not just $x = 9$
(iii)	Substitute (3, 9) into both lines	B1	$3 \times 3 = 9$ and $\frac{27 - 3 \times 3}{2} = 9$
	Or solves simultaneously $(6x = 27 - 3x \text{ oe})$ to get $x = 3$, $y = 9$		2
(iv)	[Area $AOB =]\frac{1}{2} \times 9 \times 9$ oe $(\frac{81}{2} \text{ or } 40.5)$	M1	Uses <i>their</i> (ii). May split into 2 triangles (13.5 and 27). May integrate. Must be a complete method.
	their $\left[\frac{3(9)^2}{2} - \frac{2(9)^{\frac{5}{2}}}{5}\right] - [0]$ (= 24.3)	M1	lower limit may be omitted but must be correct if seen
	their $\frac{81}{2}$ – their $\frac{243}{10}$	M1	must be from genuine attempts at area of triangle and area under curve
	16.2	A1	

12	(i)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{2(x-1)-(2x-5)}{(x-1)^2}$	M1A1	Allow slips in $\frac{du}{dx}$ and $\frac{dv}{dx}$ but must be explicit. Allow $(x-1)^2 = x^2 - 2x + 1$
		– 12 isw	B1	
		ALT using $y = \frac{-12x^2 + 14x - 5}{x - 1}$ -24x + 14	B1	
		$\left[\frac{dy}{dx} = \right] \frac{(x-1)(-24x+14) - (-12x^2 + 14x - 5)}{(x-1)^2}$	M1 A1FT	FT on their derivative of 3 term
	(ii)	$\left[\frac{d^2y}{dx^2}\right] k(x-1)^{-3}$ $k = -6 \text{ isw}$	M1	quadratic No additional terms
		k = -6 isw	A1	

(iii)	their $\left[\frac{3}{(x-1)^2} - 12\right] = 0$ and find a value for x	M1	$\begin{vmatrix} 12 x^2 - 24x + 9 = 0 \text{ oe} \\ (2x - 3)(2x - 1) = 0 \text{ oe} \end{vmatrix}$
	x = 0.5 and x = 1.5	A1	
	y = 2 and y = -22	A1	if A0 A0 then A1 for a correct
	$\frac{-6}{(-0.5)^3} > 0 \text{ therefore min when } x = 0.5 \text{ oe}$		or $\left[\frac{-6}{(-0.5)^3}\right] = 48$ therefore min when $x = 0.5$ oe
	$\left \frac{-6}{(0.5)^3} < 0 \right $ therefore max when $x = 1.5$ oe	B1	or $\left[\frac{-6}{(0.5)^3}\right]$ = -48 therefore max
			when $x = 1.5$ oe
			M1A1 is possible from other methods

8.	2	(i)	Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx} = \right] \frac{14}{(3-x)^2}$ or $\left[\frac{dy}{dx} = \right] \frac{14}{x^2 - 6x + 9}$ cao	M1 A1	allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
			or correct simplified equivalent $[y = 9] x = 2$ $\frac{0.07}{\delta x} \approx \left(\frac{dy}{dx} \Big _{x=2} \right) \text{ oe}$ 0.005 oe	B1 M1 A1	condone $\frac{0.07}{\delta x} = \left(their \frac{dy}{dx}\Big _{x=2}\right)$ not from wrong working; answer only does not score

9	(a)	$\frac{x^2}{2} + x - \frac{1}{x}(+c) \text{isw}$	В3	B1 for each term allow $\frac{x^2}{2} + x + \frac{x^{-1}}{-1}(+c)$ isw for B3
	(b) (i)	$k\cos(5x + \pi) \text{ where } k < 0$ or $\frac{\cos(5x + \pi)}{5}$ $\frac{-\cos(5x + \pi)}{5} (+c)$	M1 A1	
	(ii)	$\frac{-\cos(5(0) + \pi)}{5} - \frac{-\cos(5(-\pi/5) + \pi)}{5}$ or $\frac{-\cos(\pi)}{5} - \left(\frac{-\cos(0)}{5}\right)$ 0.4 oe	M1	correct substitution of the given limits into <i>their</i> expression of the form $k \cos(5x + \pi)$, dep on M1 in (b)(i) answer only does not score

10.	5		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
			When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B1	for $y = 0$
			Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
		(ii)	$Q\left(0, -\frac{2}{9}\right)$ or $\left(0, 0.22\right)$ or better	B1 ft	Follow through on their c from part (i)
			$R\left(0,\frac{1}{2}\ln 2\right)$ or $(0,0.35)$ or better	B1	
			Area of $PQR = \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$		
			= 0.0948	B1	Allow 0.095

11.	7 (i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B1	
	(ii)	$\left(0,\sqrt{3}\right)$ or $\left(0,1.73\right)$ or better $\left(\frac{\pi}{6},2\right)$ or $\left(0.524,2\right)$ or better	B1, B1	B1 for each
	(iii)	$\cos\left(x-\frac{\pi}{6}\right)=0$	M1	for correct attempt to solve trigonometric equation
		$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1	
	(iv)	$2\sin\left(x-\frac{\pi}{6}\right) (+c)$	B1	
	(v)	Area = $\left[2\sin\left(x - \frac{\pi}{6}\right)\right]_0^{\frac{2\pi}{3}}$	M1	for correct use of their limits, in radians, into $k \sin\left(x - \frac{\pi}{6}\right)$.
		= 2+1 = 3	A1	$\frac{1000 \text{ K sin}}{2000 \text{ K sin}} \left(\frac{x - 6}{6} \right)$

12.				
14.	10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right)10 = 165$	M1	for realising that area under the graph is needed and attempt to find an area
			DM1	for equating their area to 165 and attempt to
		leading to $U=6$	A1	solve
	(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative
	(b) (i)	27	B1	
	(ii)	$t^2 = 8 \ln 4$ $t = 3.33 \text{ or better}$	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$
	(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}}-4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule
		When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration

1	3.
	•

6	(i)	$\frac{6x}{3x^2 - 11}$	M1 A1	$\mathbf{M1} \text{ for } \frac{mx}{3x^2 - 11}$
	(ii)	$p = \frac{1}{6}$	B1	FT for $p = \frac{1}{m}$
	(iii)	$\frac{1}{6}\ln(3a^2 - 11) - \frac{1}{6}\ln 1 = \ln 2$	M1	for correct use of limits in $p \ln (3x^2 - 11)$ May be implied by following equation
		$\ln(3a^2 - 11) = \ln 2^6$ $3a^2 - 11 = 64$	DM1	for dealing with logs correctly
		$3a^2 - 11 = 64$	DM1	for solution of $3a^2 - 11 = k$
		a = 5 only	A1	for 5 obtained from an exact method

10 (i)	$f(x) = 3x^2 - 4e^{2x} (+c)$	M1	for one correct term
		A1	for one correct term $3x^2$ or $-4e^{2x}$
		A1	for a second correct term with no extras
	passing through $(0,-3)$	DM1	for correct method to find c .
	$-3 = 3 \times 0 - 4e^{0} + c$ $f(x) = 3x^{2} - 4e^{2x} + 1$		
	$f(x) = 3x^2 - 4e^{2x} + 1$	A1	for correct equation
(ii)	f'(0) = -8	B1	for $m = \frac{1}{8}$
			8
	$f'(0) = -8$ Normal: $y + 3 = \frac{1}{8}x$ $8y + 24 = x$ $y = 2 - 3x$	M1	for equation of normal using $m = \frac{1}{8}$
	8y + 24 = x	DM1	for solving normal equation simultaneously with y
	y=2-3x		= 2 - 3x to get a value of x
	leads to $x = \frac{8}{5}$ oe	A1	for $x = \frac{8}{5}$, 1.6 oe
			5, 33 33
	Area = $=\frac{1}{2} \times 3 \times \frac{8}{5} = 2.4$ oe	B1	FT for a numerical answer equal to
	2 5		$\left \frac{1}{2} \times 3 \times \text{their } x \right $
			$\left \frac{1}{2} \right ^{3 \times \text{then } x}$

4	
	ο.

			<u> </u>
11 (i)	a = 8t - 8	B1	for 8 <i>t</i> – 8
	When $t=3$, $a=16$	B1	for 16
(ii)	0.5, 1.5	B1,B1	B1 for each
(iii)	$s = \frac{4}{3}t^3 - 4t^2 + 3t$	M1 A1	for at least two terms correct all correct
	when $t = \frac{1}{2}$, $s = \frac{2}{3}$	DM1	for calculating displacement when either $t = \frac{1}{2}$
	3		$or t = \frac{3}{2}$
	when $t = \frac{3}{2}$, $s = 0$	DM1	for calculating displacement at $t = \frac{1}{2}$ and
			doubling.
	total distance travelled = $\frac{4}{3}$	A1	for $\frac{4}{3}$ oe allow 1.33
	Alternative method	M1A1	As before
	Alternative method	DM1	
		DWII	DM1 for calculating displacement when $t = 0.5$ or for calculating distance travelled between $t = 0.5$ and $t = 1.5$
		DM1	DM1 for doubling distance travelled between $t = 0.5$ and $t = 1.5$ or for adding that distance to
			displacement at $t = 0.5$
		A1	A1 for $\frac{4}{3}$ oe allow 1.33

16.	5	(i)	$\frac{dy}{dx} = 3x^2 + 4x - 7$ $x = -2 \rightarrow \frac{dy}{dx} = 12 - 8 - 7 = -3$	B1 M1	insert $x = -2$ into <i>their</i> gradient and use $(-2, 16)$ and <i>their</i> gradient of tangent in
			Equation of tangent: $\frac{y-16}{x+2} = -3 \rightarrow y = -3x + 10$	A1	equation of line.
		(ii)	Tangent cuts curve again $x^{3} + 2x^{2} - 7x + 2 = -3x + 10$ $x^{3} + 2x^{2} - 4x - 8 = 0$ $(x+2)(x+2)(x-2) = 0$ $x = 2, y = 4$	M1 A1 M1 A1A1	equate curve and <i>their</i> linear answer from (i). factorise: $(x \pm 2)$ and a two or three term quadratic is sufficient. Allow long division withhold final A1 if $(2, 4)$ not clearly identified as their sole answer.

17.	7	(i)	$h = \sqrt{9 - x^2}$ $A = \frac{\sqrt{9 - x^2}}{2} (14 + x + x) = \sqrt{9 - x^2} (7 + x)$	B2/1/0	Must be clear that $\sqrt{9-x^2}$ is the height of the trapezium. $14+2x$ oe must be seen AG
		(ii)	$\frac{dA}{dx} = \sqrt{9 - x^2} + (7 + x)\frac{1}{2}(9 - x^2)^{-0.5} \times -2x$	M1 A2/1/0	product rule on correct function minus 1 each error, allow unsimplified.
			$\frac{dA}{dx} = 0 \rightarrow 9 - x^2 = 7x + x^2$ $2x^2 + 7x - 9 = 0$	M1 A1	equate to 0 and simplify to a linear or quadratic equation. correct three term quadratic obtained
			x=1 $A=16\sqrt{2} \text{ or } 8\sqrt{8} \text{ or } \sqrt{512} \text{ or } 22.6$	A1 A1	Extra positive answer loses penultimate A1 . ignore negative solution.

		1		
18.	8 (i)	$f'(x) = \frac{(x^3 + 1)9x^2 - (3x^3 - 1)3x^2}{(x^3 + 1)^2}$ $= \frac{12x^2}{(x^3 + 1)^2}$	M1 A1	quotient rule or product rule all correct www beware $9x^6 - 9x^6$ gets A0
	(ii)	$= \frac{12x^2}{\left(x^3 + 1\right)^2}$ $\int_1^2 \frac{x^2}{\left(x^3 + 1\right)^2} dx = \frac{1}{12} \left[\frac{3x^3 - 1}{x^3 + 1} \right]_1^2$	M1	$c \times \frac{3x^3 - 1}{x^3 + 1}$ $\mathbf{FT} \ c = \frac{1}{their 12}$
		$=\frac{1}{12}\left[\frac{23}{9} - \frac{2}{2}\right]$ $=\frac{7}{54}$	DM1	top limit – bottom limit in <i>their</i> integral. or 0.130 or 0.1296 or 0.12
	(iii)	$x = \frac{3y^3 - 1}{y^3 + 1}$ $y^3 = \frac{x + 1}{3 - x}$	A1 B1	make y^3 or x^3 the subject
		$\mathbf{f}^{-1}(x) = \sqrt[3]{\frac{x+1}{3-x}}$	B1	FT take cube root (as long as y^3 or x^3 equals a fraction with terms in x or y only) oe FT change x and y – can be done at any time
		Domain: $-1 \leqslant x \leqslant 2\frac{6}{7}$	B1	Allow upper limit of 2.86. Do not isw

19.

.	1010 10	produ	past papers and revision notes visit example	auy.org	
	3 (i	i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin x}{1 + \cos x} \right) = \frac{\left(1 + \cos x \right) \cos x + \sin x \sin x}{\left(1 + \cos x \right)^2}$	M1	Quotient Rule (or Product Rule from (sinx)(1 + cosx) ⁻¹)
			,	A1	correct unsimplified
			$= \frac{\cos x + \cos^2 x + \sin^2 x}{\left(1 + \cos x\right)^2}$	В1	use of $\sin^2 x + \cos^2 x = 1$ oe
			$=\frac{1+\cos x}{\left(1+\cos x\right)^2}$	A1	completion
	(ii	i)	$\int_0^2 \left(\frac{1}{1 + \cos x} \right) dx = \left[\frac{\sin x}{1 + \cos x} \right]_0^2$	M1	correct integrand
			awrt 1.56	A1	

20. ├				
20.	7	differentiation to obtain answer in the form	M1	
		$p(3x^2+8)^{\frac{2}{3}} \text{ or } qx(3x^2+8)^{\frac{2}{3}}$		
		$6x\left(3x^2+8\right)^{\frac{2}{3}}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{3} \times 6x \left(3x^2 + 8\right)^{\frac{2}{3}}$	A1	all correct
		When $\frac{dy}{dx} = 0$ only solution is $x = 0$	DM1	$qx(3x^2+8)^{\frac{2}{3}}=0$ and attempt to solve
		$x = 0$ and $3x^2 + 8 = 0$ has no solutions	A1	
		Stationary point at (0,32)	A1	
		correct gradient method with substitution of x values either side of zero or equivalent valid method	M1	
		correct conclusion from correct work using a correct $\frac{dy}{dx}$	A1	

21.

<u> </u>	baet papere and revieren netee viert exambaday.		
9(i)	$5 + 4\left(\sec^2\left(\frac{x}{3}\right) - 1\right) \text{ leading to given answer}$	B1	use of correct identity
9(ii)	$3\tan\left(\frac{x}{3}\right) \ (+c)$	B1	
9(iii)	attempt to integrate using (i) and/or (ii)	M1	
	Area = $\int_{\frac{\pi}{2}}^{\pi} 4 \sec^2 \left(\frac{x}{3}\right) + 1 dx$	A1	all correct
	$\left[12\tan\left(\frac{x}{3}\right) + x\right]_{\frac{\pi}{2}}^{\pi}$	DM1	correct method for evaluation using limits in correct order
	$= \left(12\tan\frac{\pi}{3} + \pi\right) - \left(12\tan\frac{\pi}{6} + \frac{\pi}{2}\right)$	A1	
	$=8\sqrt{3}+\frac{\pi}{2}$	A1	

10(a)	differentiation of a quotient or equivalent product	M1	
	correct differentiation of e^{3x}	B1	
	$\frac{dy}{dx} = \frac{3e^{3x} (4x^2 + 1) - 8xe^{3x}}{(4x^2 + 1)^2}$ or $\frac{dy}{dx} = \frac{3e^{3x}}{4x^2 + 1} - \frac{8xe^{3x}}{(4x^2 + 1)^2}$	A1	everything else correct including brackets where needed, allow unsimplified
10(b)(i)	one term differentiated correctly	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4\sin\left(x + \frac{\pi}{3}\right) + 2\sqrt{3}\cos\left(x + \frac{\pi}{3}\right)$	A1	all correct
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = -5$	A1	
10(b)(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}t}$ $-5 \times \frac{\mathrm{d}x}{\mathrm{d}t} = 10 \text{ oe}$	M1	correct use of rates of change
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2$	A1	FT answer to (i)

Thore topical	. past papers and revision notes visit exambuddy.or	5	ı
2	attempt at differentiating a quotient, must have minus sign and $(x+1)^2$ in the denominator	M1	
	for $(5x^2 + 4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}}$	DB1	
	$\frac{dy}{dx} = \frac{(x+1)\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}} - (5x^2+4)^{\frac{1}{2}}}{(x+1)^2}$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	must be exact
	Alternative		
	$y = (5x^2 + 4)^{\frac{1}{2}} (x+1)^{-1}$	M1	attempt to differentiate a product
	for $(5x^2 + 4)^{-\frac{1}{2}}$	B1	
	for $\frac{1}{2}(10x)(5x^2+4)^{-\frac{1}{2}}$	DB1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}10x(5x^2 + 4)^{-\frac{1}{2}}(x+1)^{-1} + (5x^2 + 4)^{\frac{1}{2}}(-(x+1)^{-2})$	A1	all else correct
	When $x = 3$, $\frac{dy}{dx} = \frac{11}{112}$	A1	A1 must be exact

24.

· · · · · ·			
11(i)	me^{2x-1} where m is numeric constant	M1	
	$f(x) = \frac{1}{2}e^{2x-1} (+c)$	A1	condone omission of $+c$
	$\frac{7}{2} = \frac{1}{2} + c$	DM1	correct attempt to find arbitrary constant
	$f(x) = \frac{1}{2}e^{2x-1} + 3$	A1	must be an equation
11(ii)	ke^{2x-1} where k is a numeric constant	M1	
	$f''(x) = 2e^{2x-1}$	A1	
	$2x - 1 = \ln\left(\frac{4}{k}\right)$	DM1	attempt to equate to 4 and use logarithms
	$x = \frac{1}{2} + \ln \sqrt{2}$	A1	

25.

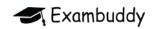
1	Integrates	M1	must be clear attempt to integrate at least one term
	$[y=]x^4+x(+c)$	A1	Both terms correct
	$17 = 2^4 + 2 + c$	DM1	Substitution of $x = 2$, $y = 17$ to find c
	$y = x^4 + x - 1 \text{cao}$	A1	must have y =

3.	3(i)	$\frac{2x}{x^2+1}$ final answer	B2	B1 for $\frac{1}{x^2+1} \times (ax+b)$, a or b must be non-zero
	3(ii)	$\delta y = their \left(\frac{2(3)}{(3)^2 + 1} \right) \times h \text{ or better}$	M1	Substitutes $x = 3$ into their $\frac{dy}{dx}$ and multiplies by h
		$\frac{6}{10}h$ oe	A1	

27.

12(i)	$\left[v = \frac{d(3t - \cos 5t + 1)}{dt} = 3 + 5\sin 5t$	B2	B1 for either with no other terms or for both with 1 extra
	$their(3+5\sin 5t)=0$	M1	Must be from an attempt to differentiate
	awrt 0.76	A1	0.7570187525
	awrt 1.13	A1	1.12793684
	substitutes their t values into s (4.07, 3.58)	DM1	must be two values
	0.48 to 0.49 [m]	A1	Final A1 may imply earlier A1s
12(ii)	25cos 5t	M1	Differentiating <i>their v</i> correctly providing at least 2 terms with one trig function
	-25	A1	Ignore +25 following -25

4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 7 \text{ soi}$	B1	
	$m_{\text{normal}} = -\frac{1}{5} \text{ soi}$	B1	finds or uses correct gradient of normal
	$m_{\text{tangent}} = 5 \text{ soi or } \left(6x - 7\right) \left(-\frac{1}{5}\right) = -1 \text{ oe}$	M1	uses $m_1 m_2 = -1$ with numerical gradients
	$6x - 7 = 5$ oe $\Rightarrow x = 2$	A1	
	<i>y</i> = 9	A1	
	k = 47	A1	
	Alternative method		
	$m_{ m normal} = -rac{1}{5}$	B1	
	$m_{\rm tangent} = 5$	M1	
	$3x^2 - 12x + 11 - c = 0 \text{ oe}$	A1	
	solving $3x^2 - 12x + 12 = 0$ oe to find $x = 2$	A1	
	<i>y</i> = 9	A1	
	k = 47	A1	



29.

1110	more topical past papers and revision notes visit exambuddy.org						
	5(i)	$\left(their 2x^4\right)(0.2 - \ln 5x) + 0.4x^5 \left(their \frac{-5}{5x}\right) \text{ oe or}$ $their 0.4x^4 - \left(\left(their 2x^4\right)\ln 5x + 0.4x^5 \left(their \frac{5}{5x}\right)\right) \text{ oe}$	M1	clearly applies correct form of product rule			
		$-2x^4 \ln 5x$ isw	A1	nfww			
	5(ii)	$3\ln 5x \text{ or } \ln 5x + \ln 5x + \ln 5x$	B1				
	5(iii)	$\frac{3}{-2}\int \left(-2x^4\ln 5x\right)dx \text{ oe}$	M1	FT $k = 2$ from (i) allow for $\frac{3}{2} \int (2x^4 \ln 5x) dx$ or, when $k = -2$, for $\int (x^4 \ln 5x) dx = -0.2x^5 (0.2 - \ln 5x)$ or $-\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe or, when FT $k = 2$, for $\int (x^4 \ln 5x) dx = 0.2x^5 (0.2 - \ln 5x)$ or $\frac{2}{3} \int (3x^4 \ln 5x) dx = 0.4x^5 (0.2 - \ln 5x)$ oe			
		$-\frac{3}{2}(0.4x^5(0.2-\ln 5x))[+c]$ oe isw cao	A1	nfww; implies M1 An answer of $0.6x^5(0.2 - \ln 5x)$ following $k = 2$ from (i) implies M1 A0			

•	11(i)	$\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x[+c] \text{ isw}$	B2	B1 for any 3 correct terms
	11(ii)	$x^3 + 4x^2 - 5x + 5 = 5$ and rearrange to $x(x^2 + 4x - 5) = 0$ oe soi	В1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Solves their $x^2 + 4x - 5 = 0$ soi	M1	
		x=-5, x=1 soi	A1	
		OEAB = 25, OBCD = 5	A1	

or more tepreat	past papere and revision notes vielt exambaday.	.0	
11(iii)	Correct or correct FT substitution of 0, their -5 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_{their-5}^0$	М1	dependent on at least B1 in (i)
	Correct or correct FT substitution of <i>their</i> 1, 0 seen in $\left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} + 5x\right]_0^{their1}$	M1	dependent on at least B1 in (i)
	their $\frac{1175}{12}$ – their OEAB + their OBCD – their $\frac{49}{12}$ oe	М1	for the strategy needed to combine the areas; may be in steps; 97.916-25+5-4.083
	$\frac{886}{12} \text{ oe or } 73\frac{5}{6} \text{ oe or } 73.83 \text{ rot to 3 or more sig}$ figs	A1	all method steps must be seen; not from wrong working
			If M0 then allow SC3 for $\int_{-5}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{1} (x^3 + 4x^2 - 5x) dx \text{oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{-5}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{1}$ $= \left[0 - \left(\frac{625}{4} - \frac{500}{3} - \frac{125}{2} \right) \right] - \left[\left(\frac{1}{4} + \frac{4}{3} - \frac{5}{2} \right) - 0 \right]$ $= \frac{443}{6} \text{oe}$
			or SC2 for $\int_{their(-5)}^{0} (x^3 + 4x^2 - 5x) dx - \int_{0}^{their(-5)} (x^3 + 4x^2 - 5x) dx \text{ oe}$ $= \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{their(-5)}^{0} - \left[\frac{x^4}{4} + \frac{4x^3}{3} - \frac{5x^2}{2} \right]_{0}^{their(-5)}$ $= \left[F(0) - F(their(-5)) \right] - \left[F(their(-5)) \right]$

31.	4	correct differentiation of $\ln(3x^2 + 2)$	B1	
		attempt to differentiate a quotient or a product	M1	
		$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)\left(\frac{6x}{3x^2 + 2}\right) - 2x\ln(3x^2 + 2)}{\left(x^2 + 1\right)^2}$	A1	all other terms correct.
		When $x = 2$, $\frac{dy}{dx} = \frac{5(\frac{12}{14}) - 4\ln 14}{25}$	M1	M1dep for substitution and attempt to simplify
		$=\frac{6}{35}-\frac{4}{25}\ln 14$	A2	A1 for each correct term, must be in simplest form

S Exampuady

32.

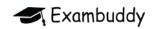
9(a)		В3	B1 for line joining (0,5) and (10,5) B1 for a line joining (10,0.5) and (30,0.5) B1 all correct with no solid line joining (10,5) to (10,0.5)
9(b)(i)	3	B1	
9(b)(ii)	$\frac{\mathrm{d}v}{\mathrm{d}t} = -15\mathrm{e}^{-5t} + \frac{3}{2}$	M1	attempt to differentiate, must be in the form $ae^{-5t} + b$
	When $\frac{dv}{dt} = 0$, $e^{-5t} = 0.1$	M1	M1dep for equating to zero and attempt to solve, must be of the form $ae^{-5t} = b$, $b > 0$ to obtain an equation in the form $-5t = k$ where k is a logarithm or < 0
	t = 0.461	A1	
9(b)(iii)	Either		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$s = -\frac{3}{5}e^{-5t} + \frac{3}{4}t^2 (+c)$	A1	
	When $t = 0$, $s = 0$ so $c = \frac{3}{5}$	M1	M1dep for attempt to find c and substitute $t = 0.5$
	s = 0.738	A1	
	Or		
	attempt to integrate, must be in the form $ce^{-5t} + dt^2$	M1	
	$\left[-\frac{3}{5}e^{-5t} + \frac{3}{4}t^2 \right]_0^{0.5}$	A1	
	correct use of limits	M1	M1dep
	leading to $s = 0.738$	A1	

٠,		ade papere and revision neter view exampaday		
	2	$\frac{dy}{dx} = 10e^{5x} + 3$ an attempt at integration in form $ae^{5x} + bx$	M1	
		$y = \frac{10}{5}e^{5x} + 3x \ (+c)$	A1	condone omission of c
		attempt to find <i>c</i> using $x = 0, y = 9$	M1	M1dep
		$y = 2e^{5x} + 3x + 7$	A1	
ı				

34.	5(i)	$\frac{5}{14}(7x-10)^{\frac{2}{5}}$	B2	B1 for $k(7x-10)^{\frac{2}{5}}$
		$\frac{5}{14} \left[(7x - 10)^{\frac{2}{5}} \right]_{6}^{a} = \frac{25}{14}$ $\frac{5}{14} (7a - 10)^{\frac{2}{5}} - \frac{5}{14} (7 \times 6 - 10)^{\frac{2}{5}} = \frac{25}{14}$ $(7a - 10)^{\frac{2}{5}} - 4 = 5$	M1	correct application of limits for $k(7x-10)^{\frac{2}{5}}$
		$a = \frac{9^{\frac{5}{2}} + 10}{7}$	M1	M1dep for evaluation of $(7 \times 6 - 10)^{\frac{2}{5}}$ and correct order of operations to find a , including dealing with power.
		$a = \frac{253}{7}$ or $36\frac{1}{7}$	A1	

		+	
8(i)	attempt to differentiate a product	M1	
	$\frac{dy}{dx} = \left((x-4) \times \frac{5}{3} \times 3(3x-1)^{\frac{2}{3}} \right) + (3x-1)^{\frac{5}{3}}$	A2	A1 for $(+)$ $\left((x-4) \times \frac{5}{3} \times 3(3x-1)^{\frac{2}{3}}\right)$
			A1 for $(+)(3x-1)^{\frac{5}{3}}$
	$= (3x-1)^{\frac{2}{3}} ((5x-20)+(3x-1))$	M1	use of $(3x-1)^{\frac{5}{3}} = (3x-1)^{\frac{2}{3}} (3x-1)$
	$= (3x-1)^{\frac{2}{3}} (8x-21)$	A1	
8(ii)	When $x=3$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 8^{\frac{2}{3}} \times 3$	M1	$(3\times3-1)^{\frac{2}{3}}\times k$ or $(9-1)^{\frac{2}{3}}\times k$ or $4\times k$ (where k is any number)
	$\partial y = 8^{\frac{2}{3}} \times 3 \times h$	M1	M1dep for their $\left((9-1)^{\frac{2}{3}} \times k \right) \times h$
	$\partial y = 12h$	A1	
			ł

6(i)	$\pi x^2 h = 500 \rightarrow h = \frac{500}{\pi x^2}$	B1	Ignore units Condone r for x
6(ii)	$A = 2\pi x^2 + 2\pi x h$	M1	Correct expression for A and insert for their h.
	$=2\pi x^2 + 2\pi x \times \frac{500}{\pi x^2} = 2\pi x^2 + \frac{1000}{x}$	A1	Answer given Condone r for x .
6(iii)	Differentiate: at least one power reduced by 1	M1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4\pi x - \frac{1000}{x^2}$	A1	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \to x = \sqrt[3]{\frac{1000}{4\pi}} \text{ isw or} \left(x = 4.3(0)\right)$	A1	
	$A = 2\pi (4.3)^{2} + \frac{1000}{4.3} = 349 \mathrm{cm}^{2}$	A1	awrt 349
	$\frac{d^2 A}{dx^2} = 4\pi + \frac{2000}{x^3} (> 0) \text{ or a positive value}$ $(\rightarrow \text{min})$	B1	Correct second differential (need not be evaluated) and conclusion. or Examine correct gradient either side of $x = 4.3$ and conclusion



7(i)	$v = 0 \to \cos 2t = \frac{1}{3}$	M1	set $v = 0$ and solve for $\cos 2t$
	$\rightarrow t = 0.615$ or 0.616	A1	
7(ii)	$s = \frac{3}{2}\sin 2t - t (+c)$	M1A1	M1 for $\sin 2t$ and $\pm t$
	$t = \frac{\pi}{4} \rightarrow s = 1.5 - \frac{\pi}{4}$ (= 0.715)	A1	
7(iii)	$a = -6\sin 2t$	M1A1	M1 for -sin2 <i>t</i>
	$t = 0.615 \rightarrow a = -5.66 \text{ or } -5.65 \text{ or } -2\sqrt{8}$	A1	condone substitution of degrees

9(i)	$\frac{d}{dx}(\ln x) = \frac{1}{x} \text{ and}$ $\frac{d}{dx}x^3 = 3x^2 \text{ or } \frac{d}{dx}x^{-3} = -3x^{-4}$	B1	seen
	ar ar	354	
	Substitution of <i>their</i> derivatives into quotient rule	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x}{x^3} \right) = \frac{x^3 \times \frac{1}{x} - 3x^2 \ln x}{x^6} \text{oe}$	A1	correct completion
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to 1 - 3\ln x = 0 \qquad \qquad \ln x = \frac{1}{3}$	М1	equate given $\frac{dy}{dx}$ to zero and solve for $\ln x$ or x
	$x = e^{\frac{1}{3}}$	A1	seen
	$y = \frac{1}{3e}$	A1	seen
9(iii)	$\frac{\ln x}{x^3} = \int \frac{1 - 3\ln x}{x^4} \mathrm{d}x \text{oe}$	M1	use given statement in (i)
	$\int \frac{1}{x^4} \mathrm{d}x = \frac{-1}{3x^3}$	B1	seen anywhere
	$\int \frac{\ln x}{x^4} dx = -\frac{1}{9x^3} - \frac{\ln x}{3x^3} $ (+C) oe	A2	A1 for each term

- 1				
•	10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + 6\cos x$	B2	B1 for each term
	10(iii)	$\frac{1}{\cos^2 x} + 6\cos x = 7$	B 1	B1dep Replaces $\sec^2 x$ by $\frac{1}{\cos^2 x}$
		$\rightarrow 6\cos^3 x - 7\cos^2 x + 1 = 0$	B1	B1dep Answer given so all steps must be correct.
	10(iv)	$\cos x = 1, \frac{1}{2}, -\frac{1}{3}.$ $\rightarrow x = 0, 1.05 \left(\text{ or } \frac{\pi}{3} \right), 1.91$	A2	A1 for 2 values awrt A1 for third value and no others in range. No credit for answers in degrees

40.	11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 16 - \frac{54}{x^3}$	M1	for $\frac{\mathrm{d}y}{\mathrm{d}x} = 16 \pm \frac{p}{x^3}$
		Equating to zero and obtaining x^3	M1	M1dep
		$x = \frac{3}{2}, \ y = 36$	A2	A1 for each

11(ii)	EITHER:	B1	B1 for both
	When $x = 1$, $y = 43$		
	When $x = 3$, $y = 51$		
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$		
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from their P and their Q
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x}\right]$
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits
	Required area = 94 - 82 =12	A1	
	OR: When $x = 1$, $y = 43$ When $x = 3$, $y = 51$	В1	B1 for both
	Equation of PQ : $y = 4x + 39$	B1	Equation of line FT from their P and their Q
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	for $\left[px + qx^2 + \frac{r}{x}\right]$
	$= \left[39x - 6x^2 + \frac{27}{x}\right]$	A1	All correct
	$= \left[39 \times 3 - 6 \times 3^2 + \frac{27}{3}\right]$	M1	M1dep for application of limits
	$-\left[39\times1-6\times1^2+\frac{27}{1}\right]$		
	Required area = 72 - 60 = 12	A1	

41.

7(i)	$v = 0 \to \cos 2t = \frac{1}{3}$	M1	set $v = 0$ and solve for $\cos 2t$
	$\rightarrow t = 0.615$ or 0.616	A1	
7(ii)	$s = \frac{3}{2}\sin 2t - t (+c)$	M1A1	M1 for $\sin 2t$ and $\pm t$
	$t = \frac{\pi}{4} \to s = 1.5 - \frac{\pi}{4}$ (= 0.715)	A1	
7(iii)	$a = -6\sin 2t$	M1A1	M1 for -sin2 <i>t</i>
	$t = 0.615 \rightarrow a = -5.66 \text{ or } -5.65 \text{ or } -2\sqrt{8}$	A1	condone substitution of degrees

9(i)	$\frac{d}{dx}(\ln x) = \frac{1}{x} \text{ and}$ $\frac{d}{dx}x^3 = 3x^2 \text{ or } \frac{d}{dx}x^{-3} = -3x^{-4}$	B1	seen
	Substitution of their derivatives into quotient rule	M1	
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x}{x^3} \right) = \frac{x^3 \times \frac{1}{x} - 3x^2 \ln x}{x^6} \text{oe}$	A1	correct completion
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to 1 - 3\ln x = 0 \qquad \qquad \ln x = \frac{1}{3}$	М1	equate given $\frac{dy}{dx}$ to zero and solve for $\ln x$ or x
	$x = e^{\frac{1}{3}}$	A1	seen
	$y = \frac{1}{3e}$	A1	seen
9(iii)	$\frac{\ln x}{x^3} = \int \frac{1 - 3\ln x}{x^4} \mathrm{d}x \text{oe}$	M1	use given statement in (i)
	$\int \frac{1}{x^4} \mathrm{d}x = \frac{-1}{3x^3}$	B1	seen anywhere
	$\int \frac{\ln x}{x^4} dx = -\frac{1}{9x^3} - \frac{\ln x}{3x^3} $ (+C) oe	A2	A1 for each term

i illore topicat p	more topical past papers and revision notes visit exambuddy.org							
· 11(ii)	EITHER:	B1	B1 for both					
	When $x = 1$, $y = 43$							
	When $x = 3$, $y = 51$							
	$\left(\frac{1}{2}(43+51)\times 2\right) - \int_{1}^{3} 16x + \frac{27}{x^{2}} dx$							
	Area of trapezium = $\left(\frac{1}{2}(43+51)\times 2\right)$ oe	B1	FT from their P and their Q					
	Integration to find area under curve	M1	for $\left[px^2 + \frac{q}{x}\right]$					
	$= \left[8x^2 - \frac{27}{x}\right]$	A1	Integration correct					
	$= \left[8 \times 3^2 - \frac{27}{3} \right] - \left[8 \times 1^2 - \frac{27}{1} \right]$	M1	M1dep for application of limits					
	Required area = 94 - 82 =12	A1						
	OR : When $x = 1$, $y = 43$	B1	B1 for both					
	When $x = 3$, $y = 51$							
	Equation of PQ : $y = 4x + 39$	B1	Equation of line FT from <i>their</i> P and <i>their</i> Q					
	Integration of their $4x + 39 - 16x - \frac{27}{x^2}$	M1	$ for \left[px + qx^2 + \frac{r}{x} \right] $					
	$= \left[39x - 6x^2 + \frac{27}{x}\right]$	A1	All correct					
	$= \left[39 \times 3 - 6 \times 3^2 + \frac{27}{3}\right]$	M1	M1dep for application of limits					
	$-\left[39\times1-6\times1^2+\frac{27}{1}\right]$							
	Required area = 72 - 60 = 12	A1						

44.

4 1				
1.	12	$\frac{\mathrm{d}y}{\mathrm{d}x} = (2x - 5)^{\frac{1}{2}} (+c)$	M1	for $k(2x-5)^{\frac{1}{2}}$,
		for $(2x-5)^{\frac{1}{2}}$	A1	
		Substitution to obtain arbitrary constant	M1	M1 dep Using $\frac{dy}{dx} = 6$ when $x = \frac{9}{2}$
		$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(2x - 5\right)^{\frac{1}{2}} + 4$	A1	for correct $\frac{dy}{dx}$
		Integration of their $k(2x-5)^{\frac{1}{2}}+c$	M1	M1 dep on first M1 for integration of $k(2x-5)^{\frac{1}{2}}$ to obtain $m(2x-5)^{\frac{3}{2}}$
		$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x (+d)$	A1	for $\frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x$ FT their (non -zero) constant
		Finding constant	M1	M1 dep for obtaining arbitrary constant for $m(2x-5)^{\frac{3}{2}} + nx + d$ using $x = \frac{9}{2}, y = \frac{2}{3}$
		$y = \frac{1}{3}(2x-5)^{\frac{3}{2}} + 4x - 20$	A1	for correct equation

5.	4(i)	$3 = \ln(5t+3)$ $e^{3} = 5t+3 \text{ or better}$	B1	
		t = 3.42	B1	
	4(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{5}{5t+3}$	M1	for $\frac{k_1}{5t+3}$
		When $t = 0$, $\frac{dx}{dt} = \frac{5}{3}$, 1.67 or better	A1	all correct

4(iii)	If $t > 0$ each term in $\frac{k_1}{5t+3} > 0$ so never	B1	dep on M1 in (ii)
	negative oe		FT on their $\frac{k_1}{5t+3}$, provided $k_1 > 0$
4(iv)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{k_2}{\left(5t+3\right)^2}$	M1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{25}{\left(5t+3\right)^2}$	A1	all correct
	When $t = 0$, $\frac{d^2x}{dt^2} = -\frac{25}{9}$ or -2.78		

4(i)	$3 = \ln(5t + 3)$	B 1	
	$e^3 = 5t + 3$ or better		
	t = 3.42	B 1	
4(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{5}{5t+3}$	M1	for $\frac{k_1}{5t+3}$
	When $t = 0$, $\frac{dx}{dt} = \frac{5}{3}$, 1.67 or better	A1	all correct
4(iii)	If $t > 0$ each term in $\frac{k_1}{5t+3} > 0$ so never	B1	dep on M1 in (ii)
	negative oe		FT on their $\frac{k_1}{5t+3}$, provided $k_1 > 0$
4(iv)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{k_2}{\left(5t+3\right)^2}$	M1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{25}{\left(5t+3\right)^2}$	A1	all correct
	When $t = 0$, $\frac{d^2x}{dt^2} = -\frac{25}{9}$ or -2.78		

i illore topica	more topical past papers and revision notes visit exambuddy.org							
. 11	When $x = 0$, $y = \frac{1}{2}$	B1	For $y = \frac{1}{2}$					
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\mathrm{e}^{4x}$	B1						
	$\frac{dy}{dx} = \frac{1}{2}$, Gradient of normal = -2	B1	FT on their $\frac{dy}{dx}$, must be numeric					
	either: Normal $y - \frac{1}{2} = -2x$ or: Gradient of normal $= -\frac{OA}{OB}$	M1	For an attempt at a normal equation passing through <i>their</i> $\left(0, \frac{1}{2}\right)$ and a substitution of $y = 0$					
	When $y = 0$, $x = \frac{1}{4}$	A1						
	EITHER: $\int_{0}^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} dx$	M1	For attempt to integrate to obtain $k_1 e^{4x} + \frac{3}{8}x$, $k_1 \neq \frac{1}{8}$, $k_1 \neq \frac{1}{2}$					
	$\left[\frac{1}{32}e^{4x} + \frac{3x}{8}\right]_0^{\frac{1}{4}}$	A1	For correct integration					
	Use of limits	M1	M1dep					
	For area of triangle $=\frac{1}{16}$	B1	FT on their $x = \frac{1}{4}$					
	$=\frac{\mathrm{e}}{32}$	A1	final answer in correct form					
	OR: $\int_0^{\frac{1}{4}} \frac{1}{8} e^{4x} + \frac{3}{8} - \frac{1}{2} + 2x dx$	M1	For attempt at subtraction and attempt to integrate to obtain $k_1e^{4x} + \frac{3}{8}x + k_2x + k_3x^2$, $k_1 \neq \frac{1}{8}$					
	$\left[\frac{1}{32} e^{4x} - \frac{1}{8} x + x^2 \right]_0^{\frac{1}{4}}$	A2	-1 for each error for integration					
	for use of limits	M1	M1dep					
	$=\frac{e}{32}$	A1	final answer in correct form					
· · · · · · · · · · · · · · · · · · ·								

	or more topical past papers and revision notes visit exambuddy.org				
48.	2(i)	$k \times \frac{1}{3x-1}$	M1		
		$3 \times \frac{1}{3x-1}$	A1		
	2(ii)	$x = \frac{11}{15} \text{ soi}$	B1		
		$0.125 \approx their \frac{dy}{dx} \Big _{x=their \frac{11}{15}} \times \delta x$ oe	M1		
		0.05 nfww	A1		

Э.	7(i)	$4\tan x + 4x\sec^2 x \text{isw}$	B2	Fully correct B1 for one correct term as part of e.g. a sum of 2 terms
	7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{3x+1}\right) = 3\mathrm{e}^{3x+1}$	B1	
		$\frac{(x^2-1)(their3e^{3x+1}) - their(2x)e^{3x+1}}{(x^2-1)^2}$	M1	
		$\frac{(x^2-1)(3e^{3x+1})-2xe^{3x+1}}{(x^2-1)^2}$ oe isw	A1	

0.	12(i)	$\tan 30 = \frac{h}{x/2} \text{ oe}$	M1	
		Correct completion to given answer	A1	
		$V = 5\sqrt{3} h^2 \text{ isw}$	B1	

12(ii)(a)	$\frac{\mathrm{d}V}{\mathrm{d}h} = their 10\sqrt{3} h \text{ or } \frac{5\sqrt{3}}{2}$	B1	FT their $V = k h^2$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \text{ soi}$	M1	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{their\left(\frac{\mathrm{d}V}{\mathrm{d}h}\right)} \times 0.5$	M1	
	0.115 or 0.11547 to 0.1155 oe	A1	
12(ii)(b)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \right) 2\sqrt{3} \times their \frac{1}{5\sqrt{3}}$	M1	
	$\frac{2}{5}$	A1	