11 (i)	$AB = 2r\sin\theta$ or $\sqrt{r^2 + r^2 - 2r^2\cos 2\theta}$	B1	
	or $\frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$		
	or $\frac{r\sin 2\theta}{\cos \theta}$		
(ii)	$2r\sin\theta + 2r\theta = 20$	M1	for use of (i) + arc length = 20, oe
	$r = \frac{10}{\theta + \sin \theta}$	A1	must be convinced

2. 4 (i)	$\frac{\pi}{3}$ isw	B1	
(ii)	[Area triangle $ABC = \frac{1}{2} \times 10^2 \times \sin\left(\frac{their \pi}{3}\right)$	M1	seen or implied by $25\sqrt{3}$ or $43.3(0)$
	[Area 1 sector =] $\frac{1}{2} \times 5^2 \times their \frac{\pi}{3}$ oe or $\pi \times 5^2 \times \frac{their60^\circ}{360}$	M1	seen or implied by $\frac{25\pi}{6}$ or 13.0(8) or 13.09
	Complete correct plan	M1	e.g. <i>their</i> triangle -3 (<i>their</i> sector)
	4.03(1) or $25\sqrt{3} - \frac{25\pi}{2}$ isw	A1	Units not required

3.	6	(i)	Valid explanation	B1	e.g. arc length is greater than the radius or 7 is greater than 5
		(ii)	$7 = 5\theta$ $\theta = 1.4 \text{ oe}$	M1 A1	implies M1
		(iii)	$\frac{1}{2} \times 5^2 \times their 1.4 \text{ oe}$ 17.50e	M1 A1	

(iv)	$[\text{triangle area} =]\frac{1}{2} \times 5^2 \times \sin their 1.4$	M1	may be embedded in a difference calculation
	or 12.3 to 12.32		
	or for $\left[\frac{1}{2} \times \text{base} \times \text{height}=\right]$		
	$\frac{1}{2} \times 6.4[4] \times 3.8[2]$ oe		
	5.18 to 5.2 inclusive	A1	implies M1

8 (i)	$47 - 24 = 12\theta$		
	$\theta = \frac{23}{12}$, so $\theta = 1.917$ or better	M1	for complete correct method to get θ =
	$\theta = 1.92$ to 2dp	A1	must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)
(ii)	$\sin\frac{\theta}{2} = \frac{CD/2}{12}$	M1	for a complete method, may use cosine rule
	CD = awrt 19.6 or 19.7	A1	to get CD
(iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71	B1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i>
	$AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	M1 A1	triangle area) for complete method to find <i>AD</i> Allow A1 for 18
	Alternative method: Area of sector = awrt 138 Difference in length between <i>BC</i> (or <i>AD</i>) and <i>OM</i> where <i>M</i> is the midpoint of <i>CD</i> = 6.88, allow awrt 6.9 Remaining area consists of two trapezia each of width 9.85 and each of area 143.4 $\frac{1}{2}(2BC-6.88) \times 9.85 = 143.4$ oe	B1 M1 M1	for sector area for attempt to find difference between parallel sides for area of one trapezium $\frac{1}{2}(2BC - their \ 6.88) \times their \ 9.85$ oe
	leading to AD = awrt 18.1 or 18.0	M1 A1	for attempt to find either <i>BC</i> or <i>AD</i>

5.	8 ((i)	$\cos TOA = \frac{6}{10} \rightarrow$ $TOA = 0.927$	M1 A1	any method
	(i	ii)	area of major sector = $\frac{1}{2}6^{2}(2\pi - 2 \times their 0.927) \qquad (= 79.7)$	M2	or M1 for $\frac{1}{2} 6^2 (2 \times their 0.927)$
			area of half kite = $\frac{1}{2}(6)\sqrt{10^2 - 6^2}$ (=24)	M 1	DM1 for $\pi \times 6^2 - \frac{1}{2} 6^2 (2 \times their \ 0.927)$
			area of kite $\times 2$ (=48)	DM1	any method
			complete correct plan awrt 128	DM1 A1	<i>their</i> major sector + <i>their</i> kite
	(ii	ii)	arc length = $6 \times (2\pi - 2 \times their 0.927) + 2 \times \sqrt{10^2 - 6^2}$) awrt 42.6	M1 A1	complete correct method

6.	10(i)	0.5	B 1	for 0.5 from correct work only
	10(ii)	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ AOB = 2.43075 rads	M1	use of cosine rule (or equivalent) to obtain angle <i>AOB</i> .
		DOC = AOB - 2(their AOD)	M1	use of angle AOD and symmetry
		DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations
		Alternative 1 $15 = 2 \times 8 \times \sin\left(\frac{1 + DOC}{2}\right)$	M1	use of basic trigonometry
		use of $\frac{1+0.5DOC}{2}$	M1	may be implied
		DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations

Alternative 2		
$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ AOB = 2.43075 rads $\angle AOB \times 8 = \operatorname{arc} AB$	M1	use of cosine rule (or equivalent) to obtain angle AOB.
$\frac{\operatorname{arc} AB - 8}{8} = \angle DOC$	M1	attempt at <i>DOC</i> , must be a complete method with <i>AOB</i> found
<i>DOC</i> = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations
Alternative 3		
Equating 2 different forms for the area of triangle AOB $\frac{15\sqrt{31}}{4} = \frac{1}{2} \times 8^2 \sin AOB$, $AOB = 2.43075$ rads	M1	using both different forms of the area of triangle <i>AOB</i>
DOC = AOB - 2 (their AOD)	M1	use of angle AOD and symmetry
<i>DOC</i> = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations

Question	Answer	Marks	Partial Marks
10(iii)	$\sin\left(\frac{1.43}{2}\right) = \frac{DC}{\frac{2}{8}} \text{ or}$ $DC^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos 1.43)$	M1	use of cosine rule or basic trigomoetry to obtain <i>DC</i>
	<i>DC</i> = 10.49	A1	awrt 10.5, may be implied
	Perimeter = $10.49 + 4 + 4 + 15$ = 33.5	A1	awrt 33.5
10(iv)	$\frac{1}{2} \times 8^2 (2.43 - \sin 2.43) - \frac{1}{2} \times 8^2 (1.431 - \sin 1.431)$	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	area of one appropriate triangle, allow unsimplified	B 1	
	an appropriate segment, allow unsimplified	B1	
	= 42.8 (allow awrt 42.8)	B 1	final answer

Alternative 1 Area of a trapezium + 2 small segments	B1	one appropriate small sector, allow unsimpified (could be doubled)
Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	an appropriate triangle, allow unsimplfied (could be doubled)
Area of trapezium = $\frac{1}{2}(15+10.5) \times (6.041-2.784)$	B1	attempt at trapezium, must have a correct attempt at finding the distance between the parallel sides – allow unsimplified
Total area = 42.8 (allow awrt 42.8)	B1	final answer
Alternative 2 Area of 2 small sectors + area of triangle <i>ODC</i> – the area of triangle <i>OAB</i> Area of a small sector = $\frac{1}{2} \times 8^2 \times \frac{1}{2}$	B 1	area of small sector, allow unsimplified, (could be doubled)
Area of triangle $ODC = \frac{1}{2} \times 8^2 \times \sin 1.43$	B1	area of triangle ODC, allow unsimplified
Area of triangle $OAB = \frac{1}{2} \times 8^2 \times \sin 2.43$	B1	area of triangle <i>OAB</i> , allow unsimplified
Total area = 42.8 (allow awrt 42.8)	B1	final answer

Question	Answer	Marks	Partial Marks
10(iv)	Alternative 3 Area of rectangle + 2 small triangles + 2 small segments Each small segment = $\frac{1}{2} \times 8^2 (0.5 - \sin 0.5)$	B1	area of a small segment, allow unsimplified, could be doubled
	$\frac{1}{2} \times \frac{(15 - 10.49)}{2} (6.041 - 2.784)$	B1	area of a small triangle, allow unsimplified, could be doubled
	Area of rectangle = $10.49 \times (6.041 - 2.784)$	B 1	allow unsimplified, could be doubled
	Total area = 42.8 (allow awrt 42.8)	B1	final answer
	Alternative 4 Sector AOB – sector AOD – sector COB – triangle DOC	B1	area of one appropriate sector; allow unsimplified; may be implied by a correct segment
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right) - 2\left(\frac{1}{2} \times 8^2 \times 0.5\right) - \left(\frac{1}{2} \times 8^2 \sin 1.43\right)$ Area = sector <i>AOB</i> - segment <i>DC</i> - triangle <i>AOB</i>	B1	area of one appropriate triangle, allow unsimplified
	$\left(\frac{1}{2} \times 8^2 \times 2.43\right)$ - (their segment) - $\left(\frac{1}{2} \times 8^2 \sin 2.43\right)$	B1	an appropriate segment, allow unsimplified
	Total area = 42.8 (allow awrt 42.8)	B1	final answer

7.	10(i)	$5 \angle BAC = 6.2, \ \angle BAC = 1.24$	B1	
	10(ii)	$\sin 0.62 = \frac{BD}{5}$, $BD = 2.905, 2.91$	B1	valid method to find <i>BD</i>
		Arc <i>BFC</i> : $\pi \times BD$ (=9.13)	M1	attempt to find arc length <i>BFC</i> , using <i>their BD</i>
		Perimeter: 9.13+6.2=15.3	A1	
	10(iii)	Area: $\left(\frac{1}{2} \times \pi \times 2.91^{2}\right) - \left(\left(\frac{1}{2} \times 5^{2} \times 1.24\right) - \left(\frac{1}{2} \times 5^{2} \times \sin 1.24\right)\right)$	B3	B1 for area of semi circle (= 13.3) B1 for area of sector (= 15.5) B1 for area of triangle (= 11.8)
		9.58≤ Area ≤ 9.62	B1	final answer

Question	Answer	Marks	Guidance
11(i)	1.48	B1	
11(ii)	$\frac{1}{2} \times 10^2 \times \theta = 21.8$	M1	correct use of sector area
	$\theta = 0.436$	A1	
11(iii)	$\angle BOC = \frac{2\pi - 1.48 - 0.436}{2} (= 2.18(4))$	B1	2.18(4) or unsimplified
	$BC = 20 \sin\left(\frac{1}{2}\angle BOC\right) \text{ or}$ $BC = \frac{10 \times \sin BOC}{\sin\left(\frac{\pi - BOC}{2}\right)} \text{ or}$ $BC = \sqrt{(200 - 200 \cos BOC)}$ $BC = 17.7(5)$	M2	M1 for a complete correct method to find <i>BC</i> using <i>their</i> angle <i>BOC</i> M1 for a correct plan using 14.8, <i>their BC</i> and $10 \times their$ answer to (ii)
	Perimeter = $14.8 + (2 \times 17.7(5)) + 4.36$ = 54.7 or 54.6	A1	awrt 54.7 or awrt 54.6

11(iv) Area = B2 B1 for $(\frac{1}{2} \times 10^2 \times 1.48) + 21.8 + 2(\frac{1}{2} \times 10^2 \sin 2.18(4))$ $(\frac{1}{2} \times 10^2 \times 1.48) + 21.8 + 2(\frac{1}{2} \times 10^2 \sin 2.18(4))$ B1 for $2(\frac{1}{2} \times 10^2 \sin 2.18(4))$ $= 178$ B1 awrt 178 from correct work Alternative method 1 $= 178$	
= 178 B1 awrt 178 from correct work	4)
	")
Alternative method 1	king
Segment area = $\frac{1}{2} (10^2 (2.18 - \sin 2.18))$ B1 B1 for $2 \times \frac{1}{2} (10^2 (2.18(4) - \sin 2.18))$	$-\sin 2.18(4)$
Area required = B1	
$100\pi - 2 \times \frac{1}{2} (10^2 (2.18(4) - \sin 2.18(4)))$	
= 178 B1 awrt 178 from correct work	king
Alternative method 2	
Area of trapezium = $\frac{1}{2}((13.5 + 4.33)(17.1))$ B1 correct area of trapezium A unsimplified)	IBCD (allow
Area of segments = $\frac{1}{2} (10^2 (1.48 - \sin 1.48)) +$ B1 correct area of both segment unsimplified)	nts (allow
$\frac{1}{2} \left(10^2 \left(0.436 - \sin 0.436 \right) \right)$	
= 178 B1 awrt 178 from correct work	king

For n	nore topical p	ast papers and revision notes visit exar	nbuddy.org	ş
9.	<i>(</i> (i)	16n = 40 as	M1	

	<u> </u>		, ,	
	6(i)	16x = 40 oe	M1	
		x = 2.5 oe (radians)	A1	
-	6(ii)	$\frac{1}{2}(16)^2(2.5)$ oe	M1	
		320	A1	
	6(iii)	$\frac{1}{2}r^2$ (<i>their</i> 2.5) = (<i>their</i> 320) - 140 oe	M1	FT provided <i>their</i> 320 > 140
		correct simplification to $r^2 = \dots$	M1	dep on first M1
		12	A1	

10.	Question	Answer	Marks	Partial Marks
	6(i)	(Arc length =) 1.5×5 oe soi	M1	implied by 7.5
		$(DE =) 10\sin(0.75)$ oe soi	M1	implied by awrt 6.82
		34.3 or answer in range 34.31 to 34.32	A1	
	6(ii)	(Area sector =) $\frac{1}{2} \times 5^2 \times 1.5$ oe	M1	implied by 18.75
		(Area triangle =) $\frac{1}{2} \times 5^2 \times \sin(1.5)$ oe	M1	implied by awrt 12.47
		31.2 or answer in range 31.21 to 31.22	A1	

11.	5(i)	9.6 = 12 <i>θ</i>	M1	For use of arc length
		$\theta = 0.8$	A1	

Question	Answer	Marks	Guidance
5(ii)	Either $\tan \theta = \frac{AB}{12}$, ($AB = 12.36$) Or $OB = \frac{12}{\cos \theta}$ ($OB = 17.22$)	M1	For attempt to find AB or OB using their θ May be implied by a correct triangle area Allow if using degrees consistently
	Either Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 12.36 Or Area $\triangle OAB = \frac{1}{2} \times 12 \times$ their 17.22 $\times \sin\theta$ (= 74.1 or 74.2)	M1	Allow if using degrees consistently For attempt to find area of triangle using <i>their</i> θ
	Area of sector $OAC = \frac{1}{2} \times 12^2 \times 0.8$ = 57.6	B 1	Allow unsimplified
	Area of shaded region = 16.5 or 16.6	A1	

2. 8(i)	[angle $ECD =]\frac{5\pi}{18}$ oe or 0.873 soi	B1	
	Attempts to find AC and subtract 8	M1	e.g. $AC = \frac{8}{\cos\frac{2\pi}{9}}$
	[<i>DC</i> =] 2.44	A1	
	$\frac{1}{2} \times 8 \times theirAC \times \sin \frac{2\pi}{9}$	M2	M1 for $\frac{1}{2} \times 8^2 \times \frac{2\pi}{9}$ or for
	OR		$\frac{1}{2} \times their 2.44^2 \times their \frac{5\pi}{18}$ seen
	$\frac{1}{2} \times 8 \times 8 \tan\left(\frac{2\pi}{9}\right) - \frac{1}{2} \times 8^2 \times \frac{2\pi}{9}$		
	$-\frac{1}{2} \times their 2.44^2 \times their \frac{5\pi}{18}$		
	awrt 1.91	A1	
8(ii)	their(6.712 - 2.443) + their 2.443 $\left(\frac{5\pi}{18}\right) + 8\left(\frac{2\pi}{9}\right)$	M2	M1 for either arc seen
	awrt 12.0	A1	

3. Question	Answer	Marks	Guidance
10(i)	Either $18^2 = 10^2 + 10^2 - 200 \cos AOB$	M1	Attempt to use cosine rule
	$\cos AOB = -0.62$	A1	Allow unsimplified
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) AOB = 2.240 so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(i)	Or $\sin \frac{AOB}{2} = \frac{9}{10}$ or $\tan \frac{AOB}{2} = \frac{9}{\sqrt{19}}$ or $\cos \frac{AOB}{2} = \frac{\sqrt{19}}{10}$	M1	Attempt at trig using a right angled triangle
	$\frac{AOB}{2} = \text{ awrt } 1.12$	A1	
	AOB = 2.2395 or greater accuracy, so 2.24 (to 2 dp) or $AOB = 2.239$ so 2.24 (to 2 dp) AOB = 2.240 so 2.24 (to 2 dp)	A1	Must justify 2 dp
10(ii)	$AOC = 2\pi - 2(2.2395)$ or $\frac{AOC}{2}$ or $ABC = \pi - (2.2395)$ oe	M1	For attempt to find angle AOC or ABC $AOC = 2\pi - 2(their AOB)$ $ABC = \pi - (their AOB)$ oe
	<i>AOC</i> = 1.804 or 1.803	A1	Condone 1.8 or 1.80
	Arc length = 18.04 or 18.03	M1	For attempt at arc length using $10 \times their AOC$
	$AC = 20\sin\frac{AOC}{2} \text{ or } 36\sin\frac{ABC}{2}$ or $\sqrt{10^2 + 10^2 - 200\cos AOC}$ or $\sqrt{18^2 + 18^2 - 648\cos ABC}$ = 15.69 or 15.7	M1	For attempt at <i>AC</i> using <i>their AOC</i> , or <i>ABC</i> but $AOC \neq 2.24$ or $\frac{2\pi}{3}$
	Perimeter = 33.7	A1	Allow awrt 33.7

10(iii)	Area of sector = 50×1.804 = 90.2 or 90.15	M1	For attempt at sector area $\frac{1}{2} \times 10^2 \times their \ AOC$ <i>AOC</i> must be in radians
	Area of triangle = 50 sin 1.804 = 48.6 or 48.66	M1	For attempt at area of triangle $\frac{1}{2} \times 10^2 \times \sin \text{ their AOC}$ AOC must be in radians
	Shaded area = 41.6 or 41.5	A1	Lack of accuracy is penalised here

7(a)	0.8	B1	
7(b)	Sector area = $\frac{1}{2}12^2(0.8)$	B1	Allow unsimplified
	57.0		
	$\tan 0.4 = \frac{AM}{12}$	M1	Attempt at AM using their $\frac{\theta}{2}$
	$AM = 12 \tan 0.4$ 5.074		Allow unsimplified
	Area of triangle = $\frac{1}{2}(5.074 \times 2) \times 2 \times 12$ 60.88	M1	Area of triangle using <i>their AM</i> , allow unsimplified
	Shaded area 3.28	A1	
7(c)	$\sin 0.4 = \frac{AM}{OA}$ $OA = \frac{5.074}{\sin 0.4}$ 13.03	M1	Attempt to find <i>OA</i> using <i>their</i> $\frac{\theta}{2}$ and <i>their AM</i>
	Perimeter = $2(1.03) + 9.6 + 2(5.074)$	M1	Allow if using <i>their</i> $\frac{\theta}{2}$ and <i>their CM</i>
	Perimeter = 21.8	A1	
	7(b)	7(b) Sector area = $\frac{1}{2}12^2(0.8)$ 57.6 $\tan 0.4 = \frac{AM}{12}$ $AM = 12 \tan 0.4$ 5.074 Area of triangle = $\frac{1}{2}(5.074 \times 2) \times 2 \times 12$ 60.88 Shaded area 3.28 7(c) $\sin 0.4 = \frac{AM}{OA}$ $OA = \frac{5.074}{\sin 0.4}$ 13.03 Perimeter = $2(1.03) + 9.6 + 2(5.074)$	7(b) Sector area = $\frac{1}{2}12^2(0.8)$ B1 57.6 $\tan 0.4 = \frac{AM}{12}$ M1 $AM = 12 \tan 0.4$ 5.074 M1 Area of triangle = $\frac{1}{2}(5.074 \times 2) \times 2 \times 12$ M1 60.88 Shaded area 3.28 A1 7(c) $\sin 0.4 = \frac{AM}{OA}$ M1 $OA = \frac{5.074}{\sin 0.4}$ M1 13.03 Perimeter = $2(1.03) + 9.6 + 2(5.074)$ M1

For more topical past papers and revision notes visit exambuddy.org	For more topica	l past papers an	d revision not	tes visit examb	uddy.org
---	-----------------	------------------	----------------	-----------------	----------

15.	11(a)	$[\text{perimeter} =]\frac{4}{3}\pi r \text{ soi}$	B2	B1 for angle $ACB = \frac{2}{3}\pi$
		$\left(their\frac{4}{3}\pi r\right) = 4\pi$ oe	M1	
		<i>r</i> = 3	A1	
	11(b)	$\frac{1}{2} \times their 3^2 \times their \frac{2\pi}{3}$ oe	M1	
		$\frac{1}{2} \times their 3^2 \times sin their \frac{2\pi}{3}$ oe	M1	
		For subtracting and doubling: their $3^2 \times their \frac{2\pi}{3} - their 3^2 \times sin their \frac{2\pi}{3}$	M1	
		$6\pi - \frac{9}{2}\sqrt{3}$ or exact equivalent	A1	

16.

11(a)	$\angle BOC = 1.5$ rad	B1	
	$\sin 0.75 = \frac{BC/2}{r}$	M1	For a complete attempt to find <i>BC</i> – must be using a right-angled triangle to get required result – Given answer
	$BC = 2r\sin 0.75$	A1	
	Perimeter = $2r + 2r \sin 0.75 + 4r + 1.5r$	M1	Dep on first M mark for attempt at perimeter
	$r(7.5+2\sin 0.75)$	A1	Given answer
11(b)	Area = $(2r + 2r\sin 0.75)r - \frac{1}{2}r^2(1.5 - \sin 1.5)$ Area = $3.36r^2 - 0.75r^2 + 0.4987r^2$	3	M1 for a correct plan M1 for $(2r + 2r \sin 0.75)r$, using their $2r \sin 0.75$ B1 for segment $\frac{1}{2}r^2(1.5 - \sin 1.5) = 0.251r^2$
	$Area = 3.11r^2$	A1	

7.	8(a)	$\angle AOB = 1.45$ (radians)	B 1	
	8(b)	Sector area $=\frac{1}{2}(r^2)(1.45)$	B 1	For correct sector area. Allow unsimplified
		Area of triangle = $\frac{1}{2} \times 0.5r \times r \times \sin(\pi - their \ 1.45)$	B1	For correct area of triangle Allow unsimplified
		Total area = $0.973r^2$	B 1	
	8(c)	$(AC^2) = r^2 + 0.25r^2 - (2 \times r \times 0.5r \cos(\pi - 1.45))$	M1	For correct substitution in cosine rule using $(\pi - their \ 1.45)$
		AC = 1.17r	A1	
		Perimeter = $2.95r + 1.17r$	B 1	FT on <i>their AC</i>
		<i>r</i> = 2.91	A1	

18.	10(a)	$\sin\frac{AOB}{2} = \frac{7.5}{10}$	M1	For a valid method
		AOB = 1.696 = 1.70 to 2 dp	A1	Must see greater accuracy to justify given answer

Question	Answer	Marks	Guidance
10(b)	$AC^{2} = 10^{2} + 25^{2} - \left(2 \times 10 \times 25 \cos\left(\frac{AOB}{2}\right)\right)$	M1	For a complete and valid method to find AC
	AC = awrt 19.9	A1	
	Major arc AB = awrt 45.9 or awrt 45.8	B 1	
	Perimeter = awrt 85.5 or awrt 85.6	A1	
10(c)	Area of major sector $AOB = \frac{1}{2} \times 10^2 (2\pi - AOB)$	M1	
	awrt 229	A1	
	Area of kite $OACB = \frac{1}{2} \times 15 \times 25$	B1	Allow working with 2 separate triangles
	Area of <i>their</i> major sector plus area of <i>their</i> kite	M1	
	Total area = awrt 417	A1	

9(a)	$AOD = 2 \times \tan^{-1}\left(\frac{2}{3}\right)$	M1	For correct method to find AOD
	AOD = 1.1760 AOD = 1.176 [to 3dp]	A1	Need to see 4 dp or more to justify 3 dp answer
9(b)	Major arc $MN = (2\pi - 1.176)12$	B1	
	$ND \text{ or } MA = 12 - \sqrt{13}$	B1	
	Perimeter = major arc $MN + MA + ND + 16$ oe	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Perimeter = 94.1	B1	
9(c)	Minor sector area = $\frac{1}{2} \times 1.176 \times 12^2$ or Major sector area = $\frac{1}{2} \times (2\pi - 1.176) \times 12^2$	B1	
	Area = major sector area – remainder of rectangle or Area = area of circle – minor sector area – remainder of rectangle or Area = circle – rectangle – minor sector + triangle AOD	B1	For <i>their</i> values in a correct plan, may be implied by a correct answer
	Area = 350	B1	Allow greater accuracy

Question	Answer	Marks	Guidance
7(a)	$\sin AOQ = \frac{7}{10}$ $POA = \pi - AOQ$ or $14^{2} = 10^{2} + 10^{2} - 200 \cos AOB \text{ oe}$ $POA = \frac{2\pi - AOB}{2}$	M1	Allow alternatives, but must be a complete method to find <i>POA</i>
	POA = 2.366195157 = 2.366 to 3 dp	A1	Must see an angle correct to more than 3dp used in order to justify 3 dp
7(b)	Area of sector = $\frac{1}{2}10^2 (2.366)$ (118.3)	B1	Allow unsimplified. Also allow use of 2.37
	Area of triangle = $\frac{1}{2}10^2 \sin 2.366$ (35)	B1	Allow unsimplified. Also allow use of 2.37
	Total area = awrt 153	B1	Allow greater accuracy
7(c)	Major arc $PB = 10 \times 2.366$	B 1	Allow unsimplified. Also allow use of 2.37
	$\sin \frac{POA}{2} = \frac{AP/2}{10}$ or $AP^2 = 10^2 + 10^2 - 200 \cos POA$	M1	For a valid attempt to find AP – may be seen in (a) or (b) but AP must be stated in this part.
	AP=18.5	A1	Allow awrt 18.5
	Perimeter: major arc $PB + 20 + their AP$	B 1	For plan, may be implied, but must have an attempt to calculate <i>AP</i>
	Total perimeter $= 62.2$	A1	Allow awrt 62.2

	iore copiedre	ast papers and revision notes visit examplicuty	.015	· · · · · · · · · · · · · · · · · · ·
22.	9(a)	[area sector =] $2 \times \frac{1}{2}a^2 \phi$ or $\frac{1}{2}a^2(2\phi)$ oe	B1	or [area kite =] $2a^2\phi$ or [area OPT =] $a^2\phi$ nfww
		[shaded area =] $\left[2 \times \frac{1}{2} \times\right] \frac{1}{2} a(a \tan \phi)$ oe or $a(a \tan \phi) - \frac{1}{2} a^2 (2\phi)$ oe soi	B1	or $[a^2\phi = \frac{1}{2}a \times PT \therefore]$ $PT = 2a\phi$ <u>and</u> $PT = a \tan \phi$ oe, nfww
		Correct equation using correct areas e.g.	M1	or equates expressions for <i>PT</i>
		$a^2\phi = \frac{1}{2}a(a\tan\phi)$ or $a(a\tan\phi) - a^2\phi = a^2\phi$ soi		
		Correct completion to given equation $\tan \phi = 2\phi$	A1	
		Alternative method		
		$\left[\frac{1}{2} \operatorname{area sector} =\right] \frac{1}{2} a^2 \phi$	(B1)	
		$\left[\frac{1}{2} \text{ shaded area} = \right]$	(B1)	
		$\frac{1}{2} \times \frac{1}{2} a(a \tan \phi) \text{ oe}$ or $\frac{1}{2} a(a \tan \phi) - \frac{1}{2} a^2 \phi$ oe soi		
		Correct equation using correct areas e.g. $\frac{1}{2}a^2\phi = \frac{1}{4}a(a\tan\phi)$	(M1)	
		or $\frac{1}{2}a^2 \tan \phi - \frac{1}{2}a^2 \phi = \frac{1}{2}a^2 \phi$ soi		
		Correct completion to given equation $\tan \phi = 2\phi$	(A1)	
	9(b)	$2a + a(2\phi) = \frac{1}{2}(2a\tan\phi + a(2\phi)) \text{ oe}$ or $a\tan\phi = 2a + a\phi$	M2	M1 for arc length = $2a\phi$ soi or for $PT = a \tan \phi$ and $PT = 2a + a\phi$
		$\tan\phi = 2 + \phi$	A1	
F				

23.	7(a)	2.8 oe	B 1	
	7(b)	$(BC = AC =)$ 10 tan 1.4 or $\frac{10\sin 1.4}{\sin 0.1708}$	M1	
		Perimeter = $10(their \ 2.8) + 2(their \ AC \ or \ BC)$	M1	
		144	A1	
	7(c)	Area of triangle AOC or BOC = $\frac{1}{2}$ their (AC or BC)×10 or $\frac{1}{2}$ their OC×10sin1.4 soi	M1	Allow premature approximation for OC
		Area of minor sector $AOB = 140$	B 1	FT on $50 \times their 2.8$
		Shaded area = 439 to 440	A1	Must have 579 ≤ kite area ≤ 580

24.	8(a)	1.75	B1	
	8(b)	$\cos BOC = \frac{7}{25}$, $\tan BOC = \frac{24}{7}$, $\sin BOC = \frac{24}{25}$ BOC = 1.287 soi	B1	
		Arc length = $r \times their$ 1.287	B1	Follow through on <i>their BOC</i>
		Perimeter = $12.25 + their 9.009 + 14$	M1	For a complete method
		35.3	A1	
	8(c)	$\left(\frac{1}{2} \times 7^2 \times 1.75\right) + \left(\frac{1}{2} \times 7^2 \times their BOC\right) oe$ or $\pi \times 7^2 - \frac{1}{2} \times 7^2 \times (2\pi - 1.75 - their 1.287)$	M1	For a complete method
		74.4	A1	

L		+	+	
25.	4(a)	$r\theta = 12$ soi	B1	
		$\frac{1}{2}r^2\theta = 57.6 \text{soi}$	B 1	
		r = 9.6 oe nfww	B1	
		$\theta = 1.25$ oe nfww	B1	
	4(b)	<i>AC</i> = 28.89	B1	
		Shaded area = $\left(\frac{1}{2} \times 28.89 \times 9.6\right) - 57.6$ soi	M1	Using their AC
		81.1	A1	
		Alternative OC = 30.45	(B1)	
		Shaded area = $\left(\frac{1}{2} \times 30.45 \times 9.6 \times \sin 1.25\right) - 57.6$ soi	(M1)	Using their OC
		81.1	(A1)	

Question	Answer	Marks	Partial Marks
9(a)	$\frac{1}{2} \times 24^2 \times \theta = 432$	M1	
	$\theta = \frac{3}{2}$ rads soi	A1	
	$24 \times their \theta$	M1	
	36 cao	A1	
	Alternative method		
	$s = r\theta$ soi and	(B1)	
	$\frac{1}{2} \times r \times s = 432$		
	$\frac{1}{2} \times 24 \times s = 432$	(M1)	
	$s = \frac{432 \times 2}{24} $ oe	(M1)	
	[<i>s</i> =] 36	(A1)	
9(b)(i)	$[OB =] 2y \cos \alpha$ oe	B1	
9(b)(ii)	$\frac{(their 2y\cos\alpha) \times y\sin\alpha}{2}$ $-\frac{1}{2} \times (their y\cos\alpha)^2 \times \alpha \text{ oe}$	M2	M1 for either area
	-		
	correct completion to $\frac{y^2}{2}\cos\alpha(2\sin\alpha - \alpha\cos\alpha)$	A1	

27.	10(a)	$27 = 12\theta$ $\theta = \frac{9}{4} \text{ oe}$	B1	$\angle AOB = \theta$
		Either $\tan(\pi - \theta) = \frac{CB}{12}$ soi	M1	Allow with <i>their</i> θ .
		Or $\frac{CB}{\sin(\pi-\theta)} = \frac{12}{\sin\left(\theta-\frac{\pi}{2}\right)}$		
		Perimeter = $24 + 27 + 2(14.86)$	M1	Allow with <i>their CB</i> .
		Perimeter = awrt 80.7	A1	From correct working only
	10(b)	$\left(\frac{1}{2} \times 12^2 \times their \ \theta\right) + (12 \times their \ CB)$ 340 oe or 341 oe	3	M1 for each area A1 for awrt 340 or 341

28.	Question	Answer	Marks	Guidance
F	10	$40 + 20\theta = 65$	*M1	
		$\theta = 1.25$	A1	
		$\sin\left(\frac{their \ \theta}{2}\right) = \frac{\frac{1}{2}AB}{\frac{20}{20}}$ $AB = 23.4 \text{ or } \frac{1}{2}AB = 11.7$	2	Dep M1 for an attempt to find <i>AB</i> or $\frac{1}{2}AB$
		Either $\tan\left(\frac{their \ \theta}{2}\right) = \frac{\text{height of triangle } ACB}{their \frac{1}{2}AB}$ Height of triangle = 8.44 Area of triangle = 98.8	3	 DepM1 for a correct attempt to find the height of the triangle M1 for attempt to find the area of the triangle using <i>their</i> height and <i>their AB</i> A1 must be at least 3 significant figures.
		Or $\cos\left(\frac{their \ \theta}{2}\right) = \frac{their \frac{1}{2}AB}{AC}$ AC = 14.4 Area of triangle $= \frac{1}{2} \times their \ AB \times their \ AC \times \sin\left(\frac{\theta}{2}\right)$ Area of triangle $= 98.8$	(3)	 DepM1 for a correct attempt to find CA M1 for attempt to find the area of the triangle using the sine rule with <i>their CA</i>. A1 must be at least 3 significant figures.
		Area of the segment $=\frac{1}{2} \times 20^2 \times (1.25 - \sin 1.25)$ Area of the segment $= 60.2$	B1	
		Area = 38.6	A1	

Question	Answer	Marks	Guidance
10	Alternative 1		
	$40 + 20\theta = 65$	(*M1)	
	$\theta = 1.25$	(A1)	
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find the <i>AC</i>
	Area of triangle $ACO = \frac{1}{2} \times 20 \times 14.43 = 144.3$	(2)	M1 for a correct attempt to find the area of the triangle using <i>their AC</i>
	Area of the sector $= 250$	(B1)	
	Area of half shaded region = $(144.3 - 125) \times 2$	(M1)	Dependent on a valid method for finding triangle ACO. Allow use of 144
	Area = 38.6	(A1)	
	Alternative 2		
	$40 + 20\theta = 65$	(*M1)	
	$\theta = 1.25$	(A1)	
	$\sin\left(\frac{\text{their }\theta}{2}\right) = \frac{\frac{1}{2}AB}{20}$ $AB = 23.4$	(2)	Dep M1 for an attempt to find <i>AB</i> or $\frac{1}{2}AB$
	$\tan\left(\frac{\text{their }\theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find <i>AC</i>
	Shaded area = $14.4 \times 20 - \frac{1}{2} \times 20^2 \times \frac{5}{4}$ Area = 38.6	(3)	M1 for area of Kite B1 for area of sector

For more topical past papers and revision notes visit exambudd	y.org
--	-------

Question	Answer	Marks	Guidance
10	Alternative 3		
	$40 + 20\theta = 65$	(*M1)	
	$\theta = 1.25$	(A1)	
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{AC}{20} \text{ oe soi}$ $AC = 14.43$	(2)	DepM1 for a correct attempt to find <i>AC</i>
	Area of triangle <i>AOB</i> = $\frac{1}{2} \times 20^2 \times \sin(\text{their }\theta)$ = 189.[7969]	(M1)	
	Area of triangle ACB = $\frac{1}{2} \times their \ AC \times their \ AB \times sin \ \frac{\theta}{2}$ = 98.8	(M1)	for a correct attempt to find the area of the triangle using <i>their AC</i> and <i>their AB</i>
	Area of the sector $= 250$	(B1)	
	Area of half shaded region = area of triangle ACB + area of triangle AOB - area of sector = $189.8 + 98.8 - 250$	(M1)	
	Area = 38.6	(A1)	

Question	Answer	Marks	Guidance
10	Alternative 4		
	$40 + 20\theta = 65$	(*M1)	
	$\theta = 1.25$	(A1)	
	$\sin\left(\frac{their \ \theta}{2}\right) = \frac{\frac{1}{2}AB}{\frac{20}{20}}$ $AB = 23.4 \text{ or } \frac{1}{2}AB = 11.7$	(2)	Dep M1 for an attempt to find <i>AB</i> or $\frac{1}{2}AB$
	$\tan\left(\frac{their \ \theta}{2}\right) = \frac{\text{height of triangle } ACB}{their \frac{1}{2}AB}$ Height of triangle = 8.44	(M1)	DepM1 for a correct attempt to find the height of the triangle
	Height of triangle <i>ABO</i> = $\sqrt{20^2 - \left(\frac{1}{2}AB\right)^2}$ = 16.22	(M1)	for a correct attempt to find to find the height of the triangle
	Area of the sector $= 250$	(B1)	
	Area of kite = $\frac{1}{2} \times 23.4 \times (16.22 + 8.44)$ = 288.5	(M1)	
	Area = 288.5 - 250 = 38.5	(A1)	