(i)	$y-6 = -\frac{4}{12}(x+8)$ (3y+x=10)	M1 A1	for a correct method allow unsimplified
(ii)	y-7=3(x+1) (y=3x+10)	DM1 A1	for attempt at a perpendicular line using $(-1, 7)$ allow unsimplified
(iii)	point of intersection $(-2, 4)$ which is the midpoint of <i>AB</i>	M1 M1 A1	for attempt to find the point of intersection using simultaneous equations for attempt to find midpoint for all correct
(iv)	Alternative method: Midpoint (-2, 4) Verification that this point lies on <i>CP</i> . $CP = \sqrt{10}$ or 3.16	M1 M1 A1 B1	for attempt to find midpoint for full verification for all correct
(v)	Area = $\frac{1}{2} \times \sqrt{10} \times 4\sqrt{10}$ = 20	M1 A1	for correct method using <i>CP</i> for 19.9 – 20.1

2	•

5	(i)	(2, 8)	B1, B1	
	(ii)	$\frac{their8 - 0}{their2 - p} = -2 \text{ or better}$	M1	Condone $\frac{their8 - 0}{their2 - p} = \frac{-1}{their \text{ gradient } AB} \text{ oe}$
		[<i>p</i> =] 6	A1	

(iii)	$[MB =]\sqrt{(6 - their 2)^{2} + (10 - their 8)^{2}}$	M1	implied by $[MB =]\sqrt{20}$ or
	or $\left[\frac{1}{2}AB = \right] \frac{1}{2}\sqrt{(6-2)^2 + (10-6)^2}$		$\left[\frac{1}{2}AB = \right]\frac{1}{2}\sqrt{80} \text{ e.g. 4.47},$
	or $[MC =]\sqrt{(their 2 - their p)^{2} + (their 8 - 0)^{2}}$		or $[MC =]\sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents
	or $tan[] = \frac{8}{4} soi$		
	or $4.47^2 = 8.94^2 + 10^2 - 2(8.94)(10)\cos[]$ or $8.94^2 = 10^2 + 10^2 - 2(10)(10)\cos[]$		
	$\sin^{-1}\left(\frac{\sqrt{20}}{10}\right)$ oe soi	M1	or $\cos^{-1}\left(\frac{\sqrt{80}}{10}\right)$
			or $\tan^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$
			or $\tan^{-1}\left(\frac{4}{8}\right)$
			or $90 - \tan^{-1}\left(\frac{8}{4}\right)$
			or equivalent complete correct method; implies first M1
	26.56 to 26.6° or 0.4636 to 0.464 rads cao	A1	Not from wrong working

8	Eliminates y e.g. $4 + \frac{5}{15x + 10} + \frac{3}{x} = 0$ or eliminates x e.g. $4 + \frac{5}{y} + \frac{3}{(y - 10)/15} = 0$	M1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$
	Rearrange to a 3-term quadratic $60x^2 + 90x + 30 = 0$ oe or $4y^2 + 10y - 50 = 0$ oe	M1 A1	condone sign slips/arithmetic slips
	Factorise or solve 3-term quadratic	M1	
	$x = -\frac{1}{2}, x = -1$ isw	A1	or $y = 2\frac{1}{2}$, $y = -5$ or $x = -\frac{1}{2}$, $x = -1$
	$y = 2\frac{1}{2}, y = -5$ isw	A1	or $x = -\frac{1}{2}, x = -1$
			If final A marks not awarded then A1 for a correct x , y pair

4.

8 (i)	$\lg y = x^2 \lg b + \lg A$		
	$\lg b = \pm 0.21$	B 1	for $\lg b = \pm 0.21$ may be implied
	$b = 0.617$ allow 0.62, $10^{-0.21}$	B1	
	$\lg A = 0.94$ allow 0.93 to 0.95	B 1	
	A = 8.71 allow awrt 8.5 to 8.9	B1	
	Alternative method		
	5.37 or $10^{0.73} = Ab$		
	1.259 or $10^{0.1} = Ab^4$	B1	for both equations, allow correct to 2 sf
	$b^3 = 10^{-0.63}$	B1	
	$b = 0.617$ allow 0.62, $10^{-0.21}$	B1	
	A = 8.71 allow awrt 8.5 to 8.9	B1	
(ii)	$x = 1.5, x^2 = 2.25$	M 1	for correct use of graph $y = theirA \times theirb^{1.5^2}$
			or $\lg y = \lg theirA + (1.5^2 \lg theirb)$
	y = 2.93, allow awrt 2.9 or 3.0	A1	
(iii)	lg $y = 0.301$, or $2 = '8.71(0.617)^{x^2}$ '	M1	for correct use of graph to read off x^2
()	$1g_y = 0.501, 012 = 0.71(0.017)$		
			$2 = theirA(theirb)^{x^2}$ or
	$x = 1.74$, allow $\sqrt{3}$ or awrt 1.7, 1.8	A1	$\lg 2 = (\lg theirb)x^2 + \lg(theirA)$

• ∟				1
	7(i)	$\lg y = \lg A + bx$	B 1	straight line form, may be implied by correct values of both A and b later
		Gradient = b ,	M1	equating gradient to b
		<i>b</i> = 3	A1	
		Use of substitution into one of the following $2.2 = \lg A + 0.5b$ $3.7 = \lg A + b$ $158.489 = A \times 10^{0.5b}$ $5011.872 = A \times 10^{b}$ or equivalent valid method leads to $\lg A = 0.7$	M1	
		$A = 5, 5.01 \text{ or } 10^{0.7}$	A1	
		Alternative 1		
		$\lg y = \lg A + bx$	B1	straight line form, may be implied by correct work later
		$2.2 = \lg A + 0.5b$	M1	one correct equation
		$3.7 = \lg A + b$	A1	both equations correct
		attempt to solve 2 correct equations	M1	
		leading to $b = 3$ and $A = 5$, 5.01 or $10^{0.7}$	A1	

F0 5.

	7(i)	Alternative 2		
		$y = A(10^{bx})$ 158.489 = $A \times 10^{0.5b}$	M1	one correct equation
		$5011.872 = A \times 10^{b}$	A1	both correct
		$\frac{5011.872}{158.489} = 10^{0.5b}$	M1	attempt to solve 2 correct equations
		leading to $b = 3$	A1	correct b
		Use of substitution leads to $A = 5$, 5.01 or $10^{0.7}$	A1	correct A
	7(ii)	Substitute A and b correctly into either $y = A(10^{0.6b})$, $\lg y = \lg A + 0.6b$ or $\lg y = \lg A + 0.6\lg 10^{b}$ or using $\lg y = 1.8 + 0.7$	M1	correct statement using <i>their</i> A and b correctly in either equation or using $\lg y = 3x + 0.7$
		$y = 316$, 315 or $10^{2.5}$	A1	
	7(iii)	Substitute A and b correctly into either $600 = A(10^{bx})$, $\lg 600 = \lg A + bx$ or $\lg 600 = \lg A + x \lg 10^{b}$ or using $\lg 600 = 3x + 0.7$	M1	correct statement using <i>their</i> A and b correctly in either equation or using $\lg y = 3x + 0.7$
		<i>x</i> = 0.693	A1	
6.	10(i)	0.5	B1	for 0.5 from correct work only
	10(ii)	$15^{2} = 8^{2} + 8^{2} - (2 \times 8 \times 8 \times \cos AOB)$ AOB = 2.43075 rads	M1	use of cosine rule (or equivalent) to obtain angle <i>AOB</i> .
		DOC = AOB - 2(their AOD)	M1	use of angle <i>AOD</i> and symmetry
		DOC = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better in previous calculations
		Alternative 1		
		$15 = 2 \times 8 \times \sin\left(\frac{1 + DOC}{2}\right)$	M1	use of basic trigonometry
		use of $\frac{1+0.5DOC}{2}$	M1	may be implied
		<i>DOC</i> = 1.43 to 2 dp	A1	Answer Given: need to have seen either 2.431 or better, or 1.431 or better or 1.215 or better in previous calculations

10(i)	t 1 1.5 2 2.5 $\ln P$ 1.48 2.12 2.76 3.4(0)	M1	allow $\ln P$ values to 1 dp rounded or truncated (1.5, 2.1, 2.8, 3.4)
	single ruled line drawn within tolerance at least for t between 1 and 2.5	A1	All points within 1 square of line / must not pass through origin
10(ii)	e ^{their3}	M1	
	18 to 22.2	A1	
10(iii)	$(0, c)$ with $0.1 \le c \le 0.3 (0.2)$	B1	allow $y = c$ condone $c =$
	m in the range $1.25 \le m \le 1.34$ (1.28)	B1	
10(iv)	$\ln P = (their 1.28)t + their 0.2$	M1	or $\ln P = (\ln b)t + \ln a$
	$P = e^{(their 1.28)t + their 0.2}$	M1	or $\ln b = m = their1.28$ and $\ln a = c = their0.2$
	$P = e^{their 0.2} e^{(their 1.28)t}$	A1	or $1.10 \le a \le 1.35$ $3.49 \le b \le 3.82$
10(v)	$1000 * e^{their 0.2} \times e^{their 1.28t}$	M1	A correct relationship e.g. $1.3t * \ln(1000) - 0.2$ where * is
	or $1000 * their a \times their b^t$		= or an inequality sign
	5.3	A1	5.2 to 5.5 must be to 1dp

0	
ŏ	•

	$y-8 = -\frac{8}{12}(x-(-8))$ oe isw or $y[-0] = -\frac{8}{12}(x-4)$ oe isw or $3y = -2x+8$ oe isw	B2	B1 for $m_{AB} = -\frac{8}{12}$ oe or M1 for $\frac{8-0}{-8-4}$ oe
8(ii)	$(-8-4)^2 + (8[-0])^2$ oe	M1	any valid method
	$\sqrt{208}$ isw or $4\sqrt{13}$ isw or 14.4222051 rot to 3 or more sf	A1	implies M1 provided nfww

		.,	
8(iii)	[coordinates of $D =$] (-2, 4) soi	B1	If coordinates of <i>D</i> not stated then a calculation for m_{CD} or a relevant length with the coordinates clearly embedded must be shown to imply B1
	Gradient methods:	M1	or Length of sides methods:
	$\left[m_{CD} = \frac{7 - their4}{0 - their(-2)} = \right] their\left(\frac{3}{2}\right)$		finds or states $AC^2 = 65 \text{ or } AC = \sqrt{65}$ or $AC^2 = (-8-0)^2 + (8-7)^2$ oe
	A		or $AC = \sqrt{(-8-0)^2 + (8-7)^2}$ oe and $CD^2 = their 13$ or $CD = their \sqrt{13}$
	2\sqrt{13} b 4		or $CD^{2} = (0 - their(-2))^{2} + (7 - their4)^{2}$ oe
	2		or $CD = \sqrt{(0 - their(-2))^2 + (7 - their4)^2}$ oe
			and $AD^2 = their 52$ or $AD = their 2\sqrt{13}$ or $AD^2 = (-8 - their (-2))^2 + (8 - their 4)^2$
	-2-		or $AD = \sqrt{(-8 - their(-2))^2 + (8 - their4)^2}$
			or uses a valid method with <i>their</i> coordinates of D to find the exact area of the triangle and equates to $\frac{1}{2}(AD)(CD)\sin(ADC)$
			2 (112)(02)(1120)
	states $\frac{3}{2} \times \left(-\frac{8}{12}\right) = -1$ or $\frac{3}{2}$ is the negative	A1	applies Pythagoras to confirm, using integer values, that $65 = 13 + 52$ or finds
	reciprocal of $-\frac{2}{3}$ oe		e.g. $AC = \sqrt{65}$ using $\sqrt{(2\sqrt{13})^2 + (\sqrt{13})^2}$
	or finds the equation of the perpendicular bisector		or
	of <i>AB</i> as $y = \frac{3}{2}x + 7$ independently of <i>C</i> and		solves $\frac{1}{2} \left(2\sqrt{13} \right) \left(\sqrt{13} \right) \sin ADC = 13$ or
	states that C lies on this line.		$\left(\sqrt{65}\right)^2 = (2\sqrt{13})^2 + (\sqrt{13})^2$
			$-2(2\sqrt{13})(\sqrt{13})\cos ADC$
			to show ADC is a right angle

5(i)	Either		
	Gradient = -0.2	B1	
	$\lg y = -0.2x + c$	B1	$\lg y = mx + c \text{ soi}$
	correct attempt to find <i>c</i>	M1	must have previous B1
	lg y = 0.42 - 0.2x or lg y = $\frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions
	Or		
	0.3 = 0.6m + c	B1	
	0.2 = 1.1m + c	B1	
	attempt to solve for both m and c	M1	must have at least one of the previous B marks
	Leading to $\lg y = 0.42 - 0.2x$ or $\lg y = \frac{21}{50} - \frac{x}{5}$	A1	line in either form, allow equivalent fractions
5(ii)	Either		
	$y = 10^{(0.42-0.2x)}$	M1	dealing with the index, using their answer to (i)
	$y = 10^{0.42} \left(10^{-0.2x} \right)$	A2	A1 for each
	$y = 2.63(10^{-0.2x})$		
	Or		
	$y = A(10^{bx})$ leads to $\lg y = \lg A + bx$ Compare this form with their equation from (i)	M1	comparing their answer to (i) with $\lg y = \lg A + bx$ may be implied by one correct term from correct work
	$\lg A = 0.42$ so $A = 2.63$	A1	
	<i>b</i> = -0.2	A1	A1 for each

10.	6(i)	Gradient = $\frac{2.4 - 0.9}{0.2 - 0.8}$ (= -2.5)	B1				
		$\ln y = -\frac{5}{2}x^2 + c$	M1	straight line form and correct substitutions to find c			
		$\ln y = -\frac{5}{2}x^2 + 2.9 \text{ oe}$	A1				
		Alternative method					
		2.4 = p(0.2) + q 0.9 = p(0.8) + q	B 1				
		Correct method of solution to find p and q from two correct equations	M1	M1dep			
		$\ln y = -\frac{5}{2}x^2 + 2.9$	A1				
	6(ii)	$y = e^{\left(-\frac{5}{2}x^2 + 2.9\right)}$	M1	dealing with ln			
		$y = e^{-\frac{5}{2}x^2} \times e^{2.9}$	M1	M1dep for dealing with the index			
		$y = 18.2z^{-\frac{5}{2}}$	A1				

	•		, 0	1
11.	12(i)	$2x^2 + 5x - 12 = 0 \text{ or } y^2 + 3y - 28 = 0$	M1	attempt to get in terms of one variable
		(2x-3)(x+4)=0 or $(y+7)(y-4)=0$	M1	M1dep for solution of a three term quadratic
		leading to $x = -4$, $y = -7$ and $x = \frac{3}{2}$, $y = 4$	A2	A1 for each 'pair'
		Midpoint $M\left(\frac{\frac{3}{2}-4}{2}, \frac{4+(-7)}{2}\right)\left(=\left(-\frac{5}{4}, -\frac{3}{2}\right)\right)$	A1	correctly obtained midpoint
		Gradient of $PQ = 2$	B 1	may be implied
		Perp gradient = $-\frac{1}{2}$	M1	$\frac{-1}{their \text{ gradient of } PQ}$
		Perp bisector: $y + \frac{3}{2} = -\frac{1}{2} \left(x + \frac{5}{4} \right)$	M1	M1dep for equation of perp bisector using <i>their</i> perp gradient and <i>their</i> midpoint. (unsimplified)
		$y = -\frac{1}{2}(-10) - \frac{17}{8} = \frac{23}{8}$	A1	all correct so far and for verification using a correct equation
		or $\frac{23}{8} = -\frac{1}{2}x - \frac{17}{8} \to x = -10$		

12(ii)	$Area = \frac{1}{2} \times \left(\frac{17}{8} + 1\right) \times \frac{5}{4}$	M1	finding <i>R</i> , <i>S</i> and <i>RS</i>
	correct method for finding area	M1	M1dep
	$=\frac{125}{64} \text{ or } 1.95 \text{ or } 1\frac{61}{64}$	A1	
	Alternative method 1		
	$Area = \frac{1}{2} \times \frac{\sqrt{125}}{4} \times \frac{\sqrt{125}}{8}$	M1	finding <i>R</i> , <i>S</i> , <i>RM</i> and <i>MS</i>
	correct method for finding area	M1	M1dep
	$=\frac{125}{64}$ or 1.95 or $1\frac{61}{64}$	A1	
	Alternative method 2	MI	finding D and C to obtain
	Area = $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$	M1	finding <i>R</i> and <i>S</i> to obtain their $\frac{1}{2} \begin{vmatrix} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{vmatrix}$
	$=\frac{1}{2}\left -\frac{5}{4}-\frac{85}{32}\right $ oe	M1	M1dep for correct method of evaluation
	$=\frac{125}{64}$ or 1.95 or $1\frac{61}{64}$	A1	

12.	2	Midpoint $\left(\frac{5}{2}, -1\right)$	B1	
		Gradient of line $=-\frac{8}{3}$	B1	
		Gradient of perp $=\frac{3}{8}$	M1	
		Equation of perp bisector: $y+1=\frac{3}{8}\left(x-\frac{5}{2}\right)$	M1	M1 dep Using <i>their</i> perpendicular gradient and <i>their</i> midpoint
		6x - 16y - 31 = 0 or -6x + 16y + 31 = 0	A1	

r more topical past papers and revision notes visit exambuddy.org					
3	$e^{y} = ax^{2} + b$	B1	may be implied, $b \neq 0$		
	either $3=5a+b$ 1=3a+b	M1	correct attempt to find a or b by use of simultaneous equations or finding the gradient and equating it to a		
	or Gradient = 1, so $a = 1$				
	Coefficient of x^2 is 1	A1			
	Intercept is -2	A1			
	$y = \ln\left(x^2 - 2\right)$	A1	For correct form		
		3 $e^{y} = ax^{2} + b$ either $3 = 5a + b$ 1 = 3a + b or Gradient = 1, so $a = 1$ Coefficient of x^{2} is 1 Intercept is -2	3 $e^y = ax^2 + b$ B1either $3 = 5a + b$ $1 = 3a + b$ M1orGradient = 1, so $a = 1$ M1Coefficient of x^2 is 1A1Intercept is -2 A1		

				H
14.	8(i)	Takes logs of both sides	M1	
		$\ln y = \ln a + n \ln x$ or $\lg y = \lg a + n \lg x$	A1	
	8(ii)	n = -0.2 to -0.3 nfww	B1	
		attempts to equate <i>y</i> -intercept to ln <i>a</i> or forms <i>their</i> ln equation with <i>their</i> gradient and a point on the line or uses two points on the line to form a pair of simultaneous equations	M1	
		$a = e^{4.7}$ isw or 110 or 109.9[47]	A1	maximum of 2 marks if no coordinates stated
	8(iii)	use of $\ln(50)$ and $\ln x = 3$ to 3.2	M1	or for $\frac{50}{theira} = x^{their n}$ or better or for $\ln 50 = \ln(theira) + (their n) \ln x$ oe
		awrt 22 or 23 to 2 significant figures	A1	implies M1

15.	8(i)	$\frac{12.1 - 5.5}{3.7 - 1.5} \ [= 3]$	B1	correct expression for gradient
		$\frac{y^2 - 5.5}{e^{2x} - 1.5} = their \text{ grad}$ or correctly use $y^2 = (their m) e^{2x} + c$ with one point to find c	M1	
		$y = [\pm]\sqrt{3e^{2x} + 1}$	A1	
	8(ii)	[±]34.8	1	
	8(iii)	$50 = \sqrt{(their3)e^{2x} + their1} \text{ or}$ $2500 = (their3)e^{2x} + their1$	B1	*
		$2x = \ln\left(\frac{2499}{3}\right)$	M1	Dep * obtain 2 <i>x</i> explicitly
		3.36 cao	A1	

. 10(i)	Method 1		
	$\lg y = A + Bx^2$	B1	statement soi
	16 = A + 6B $4 = A + 2B$	M1	one correct equation
	leading to $A = -2$ and $B = 3$	A2	A1 for each
10(i)	Method 2		
	$\lg y = A + Bx^2$	B1	statement soi
	Gradient = B B = 3	B1	
	16 = A + 6B or $4 = A + 2B$	M1	a correct equation
	A = -2	A1	
10(i)	<u>Method 3</u> $\lg y - 4 = 3(x^2 - 2)$ or $\lg y - 16 = 3(x^2 - 6)$	M1	correct equation or for correct method fo finding constant.
	OR 4 = 3(2) + c or $16 = 3(6) + c$		
	$\lg y = A + Bx^2$	B1	statement soi by <i>their A</i> and <i>B</i>
	Hence $y = 10^{3x^2 - 2}$ B = 3	B1	
	A = -2	A1	
10(ii)	$y = 10^{-2+3\left(\frac{1}{\sqrt{3}}\right)^2}$	M1	correct use of <i>their A</i> and <i>B</i>
	y = 0.1 oe	A1	
10(iii)	$2 = 10^{3x^2 - 2}$	M1	correct use of <i>their</i> A and B
	$lg 2 = 3x^{2} - 2$ $x = \sqrt{\frac{lg 2 + 2}{3}}$	M1	complete correct method to solve for <i>x</i>
	x = 0.876	A1	

17.	8(i)	$e^{y} = \frac{m}{x} + c$	B1	May be implied by subsequent work		
		Either $20 = 2m + c$ 8 = 4m + c	M1	For at least 1 correct equation		
			M1	Dep For attempt to solve <i>their</i> 2 equations simultaneously to obtain at least one unknown		
		leading to $m = -6$, $c = 32$	A1	For both		
		$y = \ln\left(32 - \frac{6}{x}\right)$	A1	Must have correct brackets Mark the final answer given		
		Or: Gradient = $m = (-6)$	M1	For attempt to find gradient and equate it to <i>m</i>		
		20 = 2m + c or 8 = 4m + c or $e^y - 8 = m\left(\frac{1}{x} - 4\right)$ or $e^y - 20 = m\left(\frac{1}{x} - 2\right)$	M1	For at least 1 correct equation, may be using <i>their m</i>		
		leading to $c = 32$ and $m = -6$	A1	For both $m = -6$, $c = 32$		
		$y = \ln\left(32 - \frac{6}{x}\right)$	A1			
	8(ii)	$x > \frac{3}{16}$ oe	B1			
	8(iii)	$y = \ln 30$ isw	B1			
	8(iv)	$2 = \ln\left(32 - \frac{6}{x}\right)$	M1	For a correct substitution and attempt to re-arrange using 2, <i>their</i> 32 and <i>their</i> – 6, keeping exactness to obtain $x =$		
		$x = \frac{6}{32 - e^2} \text{oe}$	A1	Must be exact		

10(i)	$\frac{4-3}{1-p} = \frac{1}{3}$ oe	M 1	ALT uses $y = mx + c$ with A and B a far as an equation in p only
	-2	A1	
10(ii)	Either: Finds midpoint <i>AB</i> $\left(\frac{\text{their } p+1}{2}, \frac{3+4}{2}\right)$	B1	FT their p
	Verifies $(-0.5, 3.5)$ is on L	B 1	
	y = -3x + 2 therefore $m = -3$ oe and $\frac{1}{3} \times -3 = -1$ oe	B1	
	Or: finds midpoint <i>AB</i> $\left(\frac{\text{their } p+1}{2}, \frac{3+4}{2}\right)$	B1	FT their p
	$\frac{1}{3} \times -3 = -1 \text{ oe}$	B1	
	y-3.5 = -3(x+0.5) and completion to y = -3x+2	B1	
10(iii)	<i>q</i> = 4	B1	
10(iv)	22.5 nfww	B2	B1 for correct method to find area us correct values e.g. $\frac{1}{2} \times AB \times MC$ where <i>M</i> is the
			midpoint of AB

19.	2	$\lg y^2 = mx + c$	B 1	May be implied by subsequent work
		Gradient = -4 (= m)	B 1	
		<i>c</i> = 32	B 1	
		$y = 10^{their} \frac{c}{2} + their \frac{mx}{2}$		Dep on first B1 Use of $\lg y^2 = 2\lg y$ and $10^{their \frac{c}{2} + their \frac{mx}{2}}$ Or use of $y^2 = 10^{(their c+their mx)}$ and $10^{their \frac{c}{2} + their \frac{mx}{2}}$
		$y = 10^{16-2x}$	A1	

20.	6(i)	$\ln y = \ln A + x^{2} \ln b \text{ or}$ $\lg y = \lg A + x^{2} \lg b$	B1	May be implied by a table of values for x^2 and $\ln y$ or $\lg y$ or axes labelled $\ln y$ or $\lg y$ and x^2
		hy	M1	for attempt to plot either $\ln y$ or $\lg y$ against x^2 using an evenly spaced scale on each axis.
			A2	A2 All points on a correct line (for $1 \le x^2 \le 9$) with axes correctly labelled A1 One point not on the correct line or a correct line with axes not correctly labelled. A0 Two or more points not on the correct line or one point not on the line and axes incorrect

6(ii)	Gradient = $\ln b$ or $\lg b$ $\ln b \approx 0.7$ or $\lg b \approx 0.3$ leading to	M1	for a complete method using the gradient of <i>their</i> straight-line graph of lgy or lny against x^2 to obtain b
	b = 2 (allow 1.6 – 2.4)	A1	from correct working
	Intercept = $\ln A$ or $\lg A$ $\ln A \approx 1.1$ $\lg A \approx 0.5$ leading to	M1	for a complete method using intercept of <i>their</i> straight-line graph of lgy or lny against x^2 to find A
	A = 3 (allow 2.5 – 3.6)	A1	from correct working
6(iii)	$100 = 3(2^{x^2})$ or $\ln 100 = their 1.1 + their 0.7x^2$ or $\lg 100 = their 0.5 + their 0.3x^2$ or reading from $\lg y = 2$ to obtain x^2 or from $\ln y = 4.6$ to obtain x^2	M1	for a valid method to find x^2 Substitution methods should be using values of A and b in range
	leading to $x = 2.25$ (allow 2.0 - 2.7)	A1	for an answer in range from correct working

.

21.	9(i)	Midpoint (1, 2)	B 1	May be seen on diagram
		Gradient of $AB = -\frac{3}{4}$	B1	
		Gradient of <i>PM</i> = $\frac{-1}{their \text{ gradient of } AB} = \frac{4}{3}$	M1	Use $m_1 \times m_2 = -1$
		Equation $PM \frac{y-2}{x-1} = \frac{4}{3}$	M1	dep Attempt to find equation of line with <i>their</i> midpoint and <i>their</i> gradient of <i>PM</i> . If $y = mx + c$ used <i>c</i> must be found.
		$y = \frac{4}{3}x + \frac{2}{3}$	A1	
	9(ii)	$s = \frac{4}{3}r + \frac{2}{3}$	B1	FT

Eliminate <i>r</i> or <i>s</i>	M1	From one linear and one quadratic expression. Unsimplified
$25r^2 - 50r - 875 = 0 \text{ oe}$ or $25s^2 - 100s - 1500 = 0 \text{ oe}$	A1	
(5r+25)(5r-35) = 0 oe or (5s-50)(5s+30) = 0 oe	M1	Solve three term quadratic Can be implied by correct solution.
r = 7, s = 10	A1	Do not award if negative values of r and s are also given nfww
OR Equivalent method such as:		
$\overrightarrow{MP} = \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow a^2 + b^2 = 100 \text{ and } \frac{b}{a} = \frac{4}{3}$	B1	Using distance =10 and gradient = $\frac{4}{3}$.
Eliminate <i>a</i> or <i>b</i>	M1	
$a^2 + \left(\frac{4a}{3}\right)^2 = 100$	A1	
$\operatorname{or}\left(\frac{3b}{4}\right)^2 + b^2 = 100$		
$\rightarrow a = (\pm)6$ and $b = (\pm)8$	M1	Solve
 r = 7, s = 10	A1	

22.	6(a)	x(5x+6) = 8 $5x^{2} + 6x - 8 = 0$	M1	For attempt to equate and obtain a 3- term quadratic in either x or y
		$\left(\frac{4}{5}, 10\right)$	A1	Allow A1 if only <i>x</i> -coordinates or only <i>y</i> -coordinates are given
		(-2, -4)	A1	

6(b)	Midpoint $\left(-\frac{3}{5}, 3\right)$	B1	
	Gradient 5	B1	
	$y-3 = -\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	Attempt at perp bisector using <i>their</i> midpoint and perp gradient
	$x-3 = -\frac{1}{5}\left(x+\frac{3}{5}\right)$	M1	For use of $y = x$ and attempt to solve
	$\left(\frac{12}{5}, \frac{12}{5}\right)$	A1	

23.	1	Valid method to find m $m = \frac{34-9}{3-0.5} [=10]$ oe	M1	
		Valid method to find <i>c</i> , e.g. $34 = their \ 10 \times 3 + c$	M1	
		$\sqrt[4]{y} = (their10)\frac{1}{x} + their4$	M1	
		$y = \left(\frac{10}{x} + 4\right)^4$ oe, cao	A1	

24.	5(a)	Finds coordinates of mid-point (8, -2)	B1	
		$m_{AB} = \frac{3+7}{4-12} \left[= -\frac{5}{4} \right]$ oe soi	B1	
		$m_L = \frac{-1}{-\frac{5}{4}} \text{ oe}$	M1	
		$y + 2 = \frac{4}{5}(x - 8)$ oe isw	A1	

5(b)	$y - 12 = -\frac{5}{4}(x - 5)$	B1	
	Attempts to solve <i>their</i> equations	M1	
	(13, 2)	A2	A1 for $x = 13$ or $y = 2$

25.	6(a)	$\lg y = \lg A + bx^2$	B1	Stated or may be implied by later
				work
		If using $\lg y = \lg A + bx^2$ as a starting point	M1	For correctly finding required equation(s)
		$5.25 = \lg A + 3.63b$ and $6.88 = \lg A + 4.83b$ or $5.25 = \lg A + 1.358(3.63)$		equation(3)
		or $6.88 = \lg A + 1.358(4.83)$		
		OR		
		If finding the equation of the straight line and then finding lg A and b by inspection $\lg y - 6.88 = 1.358(x^2 - 4.83)$		
		or $\lg y - 5.25 = 1.358(x^2 - 3.63)$		
		or $\lg y = 1.358x^2 + 0.31$ (or 0.32)		
		$b = 1.36, \ \frac{163}{120} \text{ or } 1\frac{43}{120}$	B 1	Must be <i>b</i> = and from correct working
		A in range 2.05 to 2.09	A1	
	6(b)	$\lg y = 0.3132 + (4 \times 1.36)$	M1	For $\lg y = (their \lg A) + 4(their b)$
		$y = 2.09 \times 10^{4 \times 1.36}$		or $y = (their A)(10^{4(their b)})$
		Allow 553 000 to 576 000	A1	
	6 (c)	$4 = 2.09(10^{1.36x^2})$ or $\lg 4 = 0.3132 + 1.36x^2$	M1	$4 = (their A)(10^{their bx^2})$ or
				$\lg 4 = (their \ \lg A) + (their \ b)x^2$
		awrt 0.46	A1	

	· ·			
26.	3(a)	Gradient of line $\frac{3-1}{4-12} = \left(-\frac{1}{4}\right)$	B1	
		Gradient of perpendicular = 4	M1	$\frac{-1}{their \text{ grad line}}$
		Mid-point is (8, 2)	B1	
		Equation: $\frac{y-2}{x-8} = 4$	M1	Using <i>their</i> perpendicular gradient and mid-point
		y = 4x - 30	A1	
	3(b)	$x = 0 \rightarrow (y) = -30$	B 1	FT equation must have 3 terms
		$y = 0 \rightarrow (x) = 7.5$	B1	FT equation must have 3 terms
		$AB = \sqrt{30^2 + 7.5^2} = 30.9$ or better	B1	nfww Accept exact answer of $\frac{15\sqrt{17}}{2}$

27.	8(a)	$\lg y = b \lg x + \lg A$	B1	May be implied by subsequent work
		$4.37 = 5.36b + \lg A$ $0.57 = 0.61b + \lg A$	M1	For at least one correct equation
		<i>b</i> = 0.8	A1	
		$lg A = k \qquad (0.082)$ $A = 10^k$	M1	Dep for substitution to obtain $\lg A = k$ and hence <i>A</i>
		A=1.21	A1	
		Alternative 1	(B1)	
		$\lg y = b \lg x + \lg A$		May be implied by subsequent work
		Gradient = $\frac{4.37 - 0.57}{5.36 - 0.61}$	(M1)	
		<i>b</i> = 0.8	(A1)	
		$lg A = k \qquad (0.082)$ $A = 10^k$	(M1)	Dep for substitution into a correct equation to obtain $\lg A = k$ and hence A
		A=1.21	(A1)	
		Alternative 2	(B1)	
		$10^{4.37} = A \times 10^{5.36b}$ or $10^{0.57} = A \times 10^{0.61b}$		
		3.8 = 4.75 <i>b</i>	(M1)	For eliminating A correctly Must have B1.
		<i>b</i> = 0.8	(A1)	
		$A = 10^{4.37 - (5.36 \times (theirb))}$ oe	(M1)	For a correct attempt to find <i>A</i> . Must have B1
		<i>A</i> = 1.21	(A1)	

8(b)	$y = 1.21(3)^{0.8}$ or $\lg y = 0.8 \lg 3 + 0.082$	B 1	FT for substitution into <i>their</i> equation
	y = awrt 2.9	B1	
8(c)	$3 = 1.21x^{0.8}$ or $\lg 3 = 0.8\lg x + 0.082$	B1	FT for substitution into <i>their</i> equation
	x = awrt 3.1	B1	

28.

3.	2	$m = \frac{9-5}{8-6}$ oe	M1	
		9 = their $2(8) + c$ oe or 5 = their $2(6) + c$	M1	
		$\ln y = 2\ln x - 7$	A1	
		Correct completion to answer: $y = e^{\ln x^2 - 7} = e^{-7}x^2$ nfww	A1	
		Alternative		
		$\ln y = p + q \ln x$ soi	(B1)	
		$m = \frac{9-5}{8-6}$ oe	(M1)	
		9 = their 2(8) + c oe or $5 = their 2(6) + c$	(M1)	
		$y = e^{-7}x^2$	(A1)	

			-	
29.	5	$27x = (x^2)^2 \text{ or } y = \left(\frac{y^2}{27}\right)^2 \text{ oe}$	M1	if M0 then, for first 4 marks, SC4 if (3, 9) only stated and verified in both equations, ignore (0, 0) or SC2 for (3, 9) only stated with no working, ignore (0, 0) If first M1 then (3, 9) with no additional working award M1SC1
		$x^4 - 27x = 0$ or $y^4 - 729y = 0$ oe nfww	A1	
		$x(x^3 - 27) = 0$ or $y(y^3 - 729) = 0$ oe	M1	
		A(3, 9) oe only nfww	A1	
		Mid-point = $(1.5, 4.5)$	B 1	
		$m_{OA} = \frac{9}{3} \text{ oe}$	B1	
		$m_{\perp} = -\frac{3}{9}$ oe	M1	
		$y - 4.5 = -\frac{3}{9}(x - 1.5)$ oe isw	A1	FT <i>their</i> mid-point and <i>their</i> $-\frac{1}{\frac{9}{3}}$
ļ				ļ

). [6(a)	$\sqrt{(11-5)^2 + (6-4)^2}$ oe	M1	
		11.7 or 11.66[19] rot to 4 or more figs	A1	
	6(b)(i)	[<i>y</i> =] 1	B 1	
	6(b)(ii)	$m_{AC} = \frac{64}{11 - 5}$ or $\frac{10}{6}$ nfww oe	B1	
		$m_{BD} = \frac{-1}{their \frac{10}{6}}$ oe	M1	
		$y - their \ 1 = -\frac{3}{5}(x-8)$ oe isw	A1	FT <i>their</i> 1 from (b)(i) and <i>their</i> perpendicular gradient
	6(b)(iii)	$\begin{pmatrix} -5\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5\\ -3 \end{pmatrix}$	B2	B1 for either
		(3) (-3)		If 0 scored, SC1 for $-5i + 3j$ and $5i - 3j$

3	gradient = $\frac{114}{21}$ oe or 5 soi	M1	or $-4 = -m + c$ and $11 = 2m + c$ oe and subtracting/substituting to solve for <i>m</i> of <i>c</i> , condone one error
	$Y-11 = their \ 5(X-2) \ oe$ or $Y4 = their \ 5(X1) \ oe$ or $11=2 \times their \ 5+c \ oe$ or $-4=-1 \times their \ 5+c \ oe$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further error
	lg y = 5lg x + 1 oe or $lg y = 5(lg x - 2) + 11 \text{ oe}$ or $lg y = 5(lg x1) - 4 \text{ oe}$	A1	
	$y = 10^{5 \times \lg x+1} \text{ oe}$ or $\lg y = \lg x^5 + \lg 10 \text{ oe}$ or $\lg \left(\frac{y}{x^5}\right) = 1 \text{ oe}$	A1	this first step in manipulating the equation, or the second step, must be seen; only one step may be implied
	$y = 10^{\lg x^5} \times 10^{[1]}$ oe or $\lg y = \lg 10x^5$ oe or $\frac{y}{x^5} = 10^{[1]}$ oe or $\lg \left(\frac{y}{x^5}\right) = \lg 10$	A1	this second step in manipulating the equation, or the first step, must be seen; only one step may be implied
	$y=10x^5$	A1	must be seen
3	Alternative $\lg y = \lg a + n \lg x$ soi	(B1)	
	Valid method to find <i>n</i> or lg <i>a</i> e.g. Solves for <i>n</i> or lg <i>a</i> : $11 = \lg a + 2n$ and $-4 = \lg a - n$	(M1)	May find gradient as above (do not need to identify it as <i>n</i> for this mark)
	$n = 5 \text{ or}$ $\lg a = 1 \text{ so } a = 10^1 \text{ or } 10$	(A1)	
	Correct method using <i>their</i> lg <i>a</i> or <i>their n</i> to find <i>their n</i> or <i>their</i> lg <i>a</i>	(M1)	FT May find intercept as above (do not need to identify it as lg <i>a</i> for this mark)
	$lga = 1$ so $a = 10^{1}$ or 10 or $n = 5$	(A1)	
	$y = 10x^5$	(A1)	must be seen

32.	8(a)	$2x^2 + 2x - 2 = x^2 + 6x - 2$	M1	For obtaining an equation in one variable
		$x^{2} - 4x = 0$ x(x-4) = 0 x = 0, x = 4	M1	Dep for a correct attempt to obtain at least one solution
		(0, -1)	A1	nfww
		(4, 19)	A1	nfww
		Mid-point $(2, 9)$ with sufficient detail	B 1	AG
	8(b)	Either Gradient of perpendicular $= -\frac{1}{5}$	M1	
		$y-9 = -\frac{1}{5}(x-2)$	M1	Dep on previous M mark for perpendicular bisector using <i>their</i> mid- point and <i>their</i> perpendicular gradient
		$7-9 = -\frac{1}{5}(12-2)$ oe	A1	For checking by substitution, must see evidence.
		Or Alternative 1 Gradient of perpendicular $= -\frac{1}{5}$	(M1)	
		$y - 7 = -\frac{1}{5}(x - 12)$	(M1)	Dep on previous M mark for perpendicular bisector using (12, 7) and <i>their</i> perpendicular gradient
		$9-7 = -\frac{1}{5}(2-12)$ oe	(A1)	For checking by substitution, must see evidence
		Or Alternative 2 Gradient of perpendicular $= -\frac{1}{5}$	(M1)	
		Gradient of line joining <i>their</i> (2, 9) to (12, 7) = $-\frac{1}{5}$	(M1)	
		(2, 9) is a common point and gradients of perpendicular bisector and <i>l</i> are the same so <i>C</i> lies on <i>l</i> .	(A1)	

8(c)	(22, 5)	2	B1 for 22 B1 for 5
	(-18, 13)	2	B1 for -18 B1 for 13

33.	9(a)	$e^{2y} = mx^2 + c$	B 1	May be implied by later work
		Either 7.96 = 4m + c 3.76 = 2m + c	M1	
		m = 2.1 oe	A1	
		<i>c</i> =-0.44 oe	A1	
		$y = \frac{1}{2} \ln \left(2.1x^2 - 0.44 \right)$ oe	A1	Do not isw
		Or gradient = 2.1 oe	(B1)	
		Use of either $7.96 = 4m + c$ or $3.76 = 2m + c$	(M1)	For use with <i>their m</i>
		c = -0.44 oe	(A1)	
		$y = \frac{1}{2} \ln \left(2.1x^2 - 0.44 \right)$ oe	(A1)	Must be bracketed correctly
	9(b)	$y = \frac{1}{2} \ln(their 2.1x^2 - their 0.44)$ oe	M1	Must use the form $y = k \ln (px^2 \pm q)$ $p \neq 1$ and $q \neq 0$ or $e^{2y} = mx^2 + c$
		0.253	A1	
	9(c)	<i>their</i> $2.1x^2 - their$ $0.44 > 0$ or $= 0$ or ≥ 0 soi	B 1	
		Correct attempt to obtain the critical value using <i>their</i> $2.1x^2 - 0.44 = 0$	M1	Must be from the form $y = k \ln (px^2 - q)$, $p \neq 1$ and $q > 0$
		$x > 0.458 \text{ or } x > \sqrt{\frac{22}{105}}$ oe	A1	

34.	3(a)	Gradient = 4 soi	B1	
		Intercept = -3 soi	B1	
		$lg(2y+1) = 4x^2 - 3$ oe	M 1	For $lg(2y+1) = their m(x^2) + their c$
		$y = \frac{1}{2} (10^{4x^2 - 3} - 1)$ or $y = \frac{\frac{10^{4x^2}}{1000} - 1}{2}$	A1	
	3(b)	<i>y</i> = 0	B1	Must have at least 3 marks from part (a)
	3(c)	$2 = \frac{1}{2} \left(10^{4x^2 - 3} - 1 \right) \text{ oe}$ and attempt to obtain $x = \dots$	M1	Dep on M mark in part (a) for use of $y = 2$ in <i>their</i> $y = \frac{1}{2} (10^{4x^2 - 3} - 1)$, $y = \frac{10^{4x^2}}{1000} - 1$ or
				$lg(2y+1) = 4x^2 - 3$ and attempt to obtain x =
		$x = (\pm) 0.962$ or better	A1	

35.

3	Valid method to find m $m = \frac{8-1}{9-16} [=-1]$	M1	
	Valid method to find c e.g. $1 = their(-1) \times 16 + c$	M1	FT their m
	$\sqrt[3]{y} = their(-1)x^2 + their17$	A1	Equation with correct variables and $\sqrt[3]{y} =$
	$y = (-x^2 + 17)^3$ oe, isw	A1	

36.	3	Uses $b^2 - 4ac$: $6^2 - 4(2k - 1)(k + 1)$	M1	
		$-8k^2 - 4k + 40 * 0$ oe	M1	dep on first M1
				where * is = or any inequality sign
				condone one sign or arithmetic slip in simplification
		Factorises or solves <i>their</i> 3-term quadratic expression or equation for CVs e.g. $(5+2k)(8-4k)$ oe	M1	
		Finds correct CVs: -2.5 oe, 2	A1	
		$-2.5 \leqslant k \leqslant 2$	A1	mark final answer

37.	13(a)	Midpoint (10, 9)	B1	
		Gradient of $l = -\frac{5}{3}$	B1	
		Equation of <i>l</i> : $y + 9 = -\frac{5}{3}(x - 10)$ oe	M1	Must be using <i>their</i> perpendicular gradient and <i>their</i> mid-point
		<i>y</i> = -4	A1	
	13(b)	Attempt to use <i>their</i> R and displacement vectors or Pythagoras to find S	M1	May be implied by one correct coordinate
				If Pythagoras is used: M1 for an attempt to reach to a 3- term quadratic with one variable using <i>their</i> equation and <i>their</i> midpoint from (a) e.g. $34x^2 - 680x + 646 = 0$
		(1, 6)	A1	
		(19, -24)	A1	

hore topical past papers and revision notes visit exambuddy.org			
11(b)	$m_{AB} = \frac{-6-6}{4-(-5)}$ oe or $-\frac{12}{9}$ or $-\frac{4}{3}$	B1	
	$m_{CD} = \frac{3}{4}$	M1	FT $\frac{-1}{their m_{AB}}$
	$y-2 = \frac{3}{4}(x+2)$ oe	M1	FT their (-2, 2) and $\frac{-1}{their m_{AB}}$
	or $y = \frac{3}{4}x + c$ and $2 = \left(\frac{3}{4}\right)(-2) + c$ oe soi		
	$y = \frac{3}{4}x + \frac{7}{2}$ or equivalent in form y = mx + c	A1	
11(c)	$(x-4)^{2} + (y+6)^{2} = 125 \text{ oe, soi}$	B1	
	Uses <i>their</i> $y = \frac{3}{4}x + \frac{7}{2}$ to eliminate one unknown	M1	if correct implies B1
	Correct equation in one unknown $[BD^{2} =](x-4)^{2} + \left(\frac{3}{4}x + \frac{7}{2} + 6\right)^{2} = 125 \text{ oe}$	A1	
	Writes in solvable form: $25x^2 + 100x - 300 = 0$ oe	A1	
	Factorises or solves a correct 3-term quadratic	A1	
	(2, 5) and (-6, -1)	A1	If B1 , M0 award: SC2 for identifying one correct point by inspection from the length equation and testing it in the correct equation of <i>CD</i> and SC2 for identifying the second correct point by inspection from the length equation and testing it in the correct equation of <i>CD</i>
		$m_{AB} = \frac{1}{4 - (-5)} \text{ of } or -\frac{1}{9} \text{ or } -\frac{1}{3}$ $m_{CD} = \frac{3}{4}$ $y - 2 = \frac{3}{4}(x+2) \text{ oe}$ or $y = \frac{3}{4}x + c \text{ and } 2 = \left(\frac{3}{4}\right)(-2) + c \text{ oe soi}$ $y = \frac{3}{4}x + \frac{7}{2} \text{ or equivalent in form}$ $y = mx + c$ 11(c) $(x-4)^2 + (y+6)^2 = 125 \text{ oe, soi}$ Uses <i>their</i> $y = \frac{3}{4}x + \frac{7}{2}$ to eliminate one unknown $Correct \text{ equation in one unknown}$ $[BD^2 =](x-4)^2 + \left(\frac{3}{4}x + \frac{7}{2} + 6\right)^2 = 125 \text{ oe}$ Writes in solvable form: $25x^2 + 100x - 300 = 0 \text{ oe}$ Factorises or solves a correct 3-term quadratic	$m_{AB} = \frac{1}{4 - (-5)} \text{ of } \text{or } -\frac{1}{9} \text{ or } -\frac{1}{3}$ $m_{CD} = \frac{3}{4}$ $y - 2 = \frac{3}{4}(x+2) \text{ oe}$ or $y = \frac{3}{4}x + c \text{ and } 2 = \left(\frac{3}{4}\right)(-2) + c \text{ oe soi}$ $y = \frac{3}{4}x + \frac{7}{2} \text{ or equivalent in form}$ $y = mx + c$ $11(c)$ $(x-4)^2 + (y+6)^2 = 125 \text{ oe, soi}$ $B1$ $Uses their \ y = \frac{3}{4}x + \frac{7}{2} \text{ to eliminate one}$ $unknown$ $Correct equation in one unknown$ $[BD^2 =](x-4)^2 + \left(\frac{3}{4}x + \frac{7}{2} + 6\right)^2 = 125 \text{ oe}$ $Writes in solvable form:$ $25x^2 + 100x - 300 = 0 \text{ oe}$ $Factorises or solves a correct 3-term$ $quadratic$

11(c)	Alternative		
	$[BC =] \sqrt{(4 - (their - 2))^2 + (-6 - (their 2))^2}$	(B1)	FT their C
	$CD = \sqrt{125 - their 100}$	(M1)	FT <i>their</i> BC^2 providing $125 - their$ $100 > 0$
	<i>CD</i> = 5	(A1)	
	$ \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} \text{ or } \begin{pmatrix} -4 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} $	(A2)	A1 for $\overrightarrow{CD_1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ or $\overrightarrow{CD_2} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$ soi
	OR finds $25x^2 + 100x - 300 = 0$ oe		OR A1 for finds $(x+2)^2 + \left(\frac{3}{4}x + \frac{7}{2} - 2\right)^2 = 25$
	(2, 5) and (-6, -1)	(A1)	

39.	10 (a)	2 = p - q and 14 = 4p - 2q oe p = 5q = 3	M1 A1 A1	
	(b)	Factorise 10^{2x} 2(10 ^x) 24[-0] or factorise $u^2 - 2u - 24$ [=0]	M1	or applies the formula or completes the square
		$ \begin{array}{l} 10^x = 6 \\ x = 1g6 \text{cao as final answer} \end{array} $	A1 A1	ignore $10^x = -4$ for this mark or exact equivalent