| Questic n | A nswer | Mark | |-----------|------------------------------------------------------------------------------------------------------|------| | 4 (a) (i) | 1 <sup>st</sup> order | 1 | | (ii) | 1 <sup>st</sup> order | 1 | | (iii) | rate = k[CF <sub>3</sub> CHO][OH <sup>-</sup> ] | 1 | | (iv) | mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> (or per any suitable time unit) | 1 | | (v) | calculation from candidate's answer to (iii) (expected answer = 6) | 1 | | (b) (i) | rate-determining step: step 1 explanation: both reactant species are in step 1/rate-determining step | 1 1 | | (ii) | acid/proton donor/acidic behaviour | 1 | | (c) | nucleophilic addition | 1 | | (d) | M1: both curly arrows M2: dipole correctly shown $CH_3 \frac{\delta^4}{CH_2} CHO$ | 1 1 | | Question | Answer | Marks | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 1(a) | N +2 to +3 (and oxidised) | 1 | | | Br <sub>2</sub> /Br 0 to –1 (and reduced) | 1 | | 1(b) | $\begin{pmatrix} x & x & \\ x & 0 & \begin{pmatrix} x & \bullet \\ x & \bullet \end{pmatrix} & N & \begin{pmatrix} \bullet & x & \\ \bullet & x & \\ & & & x \end{pmatrix}$ | | | | 3 bonding pairs around N (in a structure involving NOBr) | 1 | | | rest of molecule correct | 1 | | 1(c)(i) | the <b>power</b> to which a concentration of a reactant is raised in the <b>rate equation</b> | 1 | | 1(c)(ii) | using expt. 2 and 3 a = 2 or [NO] 2nd order and conc $\times$ 3 rate $\times$ 9 or 6.1 $\times$ 10 <sup>-2</sup> /6.8 $\times$ 10 <sup>-3</sup> = (0.09/0.03) <sup>a</sup> | 1 | | | using expt. 1 and 2<br>b = 1 or [Br <sub>2</sub> ] 1 <sup>st</sup> order<br>and conc × 2 rate × 2 or $6.8 \times 10^{-3}/3.4 \times 10^{-3} = (0.04/0.02)^b$ | 1 | | (c)(iii) | initial rate = 0.16(32) | 1 | | 1(c)(iv) | $(0.0034 = k(0.03)^2(0.02))$<br>k = 188.9 | 1 | | | $\text{mol}^{-2}\text{dm}^{6}\text{s}^{-1}$ | 1 | | 1(c)(v) | k decreases (as rate decreases) | 1 | | Question | Answer | Marks | |----------|------------------------|-------| | 1(d) | m = 2 <b>and</b> n = 0 | 1 | | Question | Answer | Marks | |-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 1(a) | Cl+3 to +4 (and oxidised) | 1 | | | Cl 0 to -1 (and reduced) | 1 | | 1(b) | 19 electrons total [1] correct diagram [1] | 2 | | 1(c)(i) | the exponent / power to which a concentration is raised in the rate equation | 1 | | 1(c)(ii) | $(0.0022 = k(0.01) \times (0.06))$<br>k = 3.7 (3.67) | 1 | | | mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> | 1 | | 1(c)(iii) | initial rate = $5.50 \times 10^{-3}$ | 1 | | | [ClO <sub>2</sub> ] = 0.048 | 1 | | 1(d)(i) | slowest step (in a multi-step reaction) | 1 | | 1(d)(ii) | 1 mole of F <sub>2</sub> and 1 mole ClO <sub>2</sub> reacting in the rate-determining step | 1 | | | 1st step is rate-determining step and a balanced mechanism consistent with overall equation e.g. $ClO_2 + F_2 \rightarrow ClO_2F_2$ $ClO_2 + ClO_2F_2 \rightarrow 2ClO_2F$ or $ClO_2 + F_2 \rightarrow ClO_2F + F$ $ClO_2 + F \rightarrow ClO_2F$ | 1 | | 1(e) | k increases (as rate increases) | 1 | | Question | Answer | Marks | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 6(a) | Any of the three methods possible. Any 4 of the 5 points for each method available for maximum 4 marks. Method 1 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock at known time take out a sample / X and add it to ice-cold solvent titrate against HC! repeat at time at known time intervals Method 2 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock at known time pour into ice-cold solvent or pour ice-cold solvent in titrate against HC! repeat with different concentrations of either A or B, or repeat using different times Method 3 Ensure both solutions (A and B) at 40 °C before mixing mix known volumes of A and B and start the clock and add pH meter at a known time record the pH repeat pH readings at known time intervals | 4 | | 6(b)(i) | from 1 and 3: when [RC1] is trebled, so is rate, so order w.r.t. [RC1] = 1 | 1 | | | from 1 and 2: when both concentrations are doubled, rate doubles so [OH¯] has no effect on rate, so order w.r.t.[OH¯] = 0 | 1 | | 6(b)(ii) | rate = $k[RCl]$ AND units: $sec^{-1} 1/s$ | 1 | | 6(b)(iii) | relative rate = 2.0 | 1 | | Question | Answer | Marks | |----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 6(c)(i) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 | | | | ' | | | OH⁻ with lone pair and curly arrow | 1 | | 6(c)(ii) | Beginning with candidate's mechanism in (c)(i): If S <sub>N</sub> 1: racemate / mixture of / two optical isomers will be formed, because: the intermediate is planar / has a plane of symmetry / OH <sup>-</sup> can approach from top or bottom or from any direction If S <sub>N</sub> 2: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an asymmetric transition state | 1 | | Question | Answer | Marks | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(d)(i) | either $S_N 1$ or $S_N 2$ mechanism $S_N 2 \qquad C_2 H_5 \qquad C_3 H_5 \qquad C_4 H_5 \qquad C_4 H_5 \qquad C_5 H_5 \qquad C_5 H_5 \qquad C_6 H_5 \qquad C_6 H_6 $ | | | | C-Cl dipole AND C-Cl curly arrow | 1 | | | intermediate cation OR 5-valent transition state (charge essential) | 1 | | | $\mathrm{I}^{\scriptscriptstyle{-}}$ with lone pair AND other curly arrow | | | 2(d)(ii) | If $S_N1$ in $2(d)(i)$ <b>mixture of / two</b> optical isomers will be formed, AND the intermediate can be formed by the $I^-$ approaching from top or bottom plane If $S_N2$ in $2(d)(i)$ <b>one optical isomer</b> AND attack always from fixed direction / opposite side | | | Question | Answ | er | | | Marks | |----------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|------|-------| | 4(a)(i) | experiments 1 and 2: doubling [CIO <sub>2</sub> ] quadruples the rate, so s | second order | | | | | | experiments 2 and 3: doubling [OHT] doubles the rate, so first | order | | | | | | rate equation = k[ClO <sub>2</sub> ] <sup>2</sup> [OH <sup>-</sup> ] | | | | | | 4(a)(ii) | from experiment t 2: $9.34 \times 10^{-4} = k(2.50 \times 10^{-2})^2 \times 1.30 \times 10^{-3}$<br>$k = 1.15 \times 10^3$ | 3 | | | | | | units: mol <sup>-2</sup> dm <sup>6</sup> s <sup>-1</sup> | | | | | | 4(b)(i) | heterogeneous catalysts are in different physical state from the physical state as the reactants | e reactants <b>AND</b> homo | geneous catalysts are in the | same | | | 4(b)(ii) | catalysed reaction | heterogeneous | homogeneous | | | | | manufacture of ammonia in the Haber process | ✓ | | | | | | removal of nitrogen oxides from car exhausts | ✓ | | | | | | oxidation of sulfur dioxide in the atmosphere | | ✓ | | | | 4(c)(i) | $2MnO_4^-$ + $6H^+$ + $5(CO_2H)_2$ → $2Mn^{2^+}$ + $10 CO_2$ + $8 H_2O$ correct Mn : $(CO_2H)_2$ ratio rest of equation | | | 1 | 1 | | 4(c)(ii) | first section: flatter second section: steeper, before flattening | | | | 1 | | | of results of | | | | | | Question | Answer | Marks | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | ,4(d)(i) | Westland westland (maction) (westland (maction) (westland (maction) (westland (maction) (westland (maction) (westland (maction) (westland (westlan | 3 | | | diagram catalyst lowers $E_a$ for both the forward and reverse reactions so the process requires less energy/can occur at a lower temperature | 1<br>1<br>1 | | 4(d)(ii) | $K_p = (pNH_3)^2/(pN_2)(pH_2)^3$<br>1.45 × 10 <sup>-5</sup> = $(pNH_3)^2$ / 20 × 60 × 60 × 60 | 1 | | | pNH <sub>3</sub> = 7.91 | 1 | | Question | Answer | Marks | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a) | change in amount / mass / concentration of reactant / product per time | 1 | | 2(b) | decrease in volume or pressure | 1 | | 2(c) | $8.13 \times 10^4 / 81280 / 81300$ | 1 | | | $\text{mol}^{-2}\text{dm}^6\text{s}^{-1}$ | 1 | | 2(d) | $\sqrt{(0.00231/(0.0046 \times 81280))} = 2.49 \times 10^{-3}$ | 1 | | 2(e) | 2, 1, 3 | 1 | | 2(f)(i) | 2 | 1 | | 2(f)(ii) | the total of steps 1 and 2 / the components of 2 are two NO and one H <sub>2</sub> | 1 | | 2(g)(i) | time for amount or mass or concentration to halve | 1 | | 2(g)(ii) | 0.02 at start and 0.01 after 2 seconds | 1 | | | 0.005 after 4 seconds and 0.0025 after 6 seconds | 1 | | 2(h)(i) | NO + $\frac{1}{2}$ O <sub>2</sub> $\rightarrow$ NO <sub>2</sub> or NO + O <sub>2</sub> $\rightarrow$ NO <sub>2</sub> + $\frac{1}{2}$ O <sub>2</sub> AND NO <sub>2</sub> + SO <sub>2</sub> $\rightarrow$ NO + SO <sub>3</sub> | 1 | | 2(h)(ii) | (NO is) regenerated / reformed | 1 | | 2(h)(iii) | SO <sub>3</sub> + H <sub>2</sub> O → H <sub>2</sub> SO <sub>4</sub> <b>AND</b> acid rain or consequence of this described | 1 | | Question | Answer | Marks | |----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a) | colorimetry / (change) in colour / less light transmission / measure absorbance | 1 | | 2(b) | Exp 1 and 2: rate $\times$ 1.75 and $[H_2] \times$ 1.75 (when $[IC]$ no change) or calculation e.g.: order = $(0.007/0.004)/(1.75/1.00) = 1$ or Exp 1 and 3: rate $\times$ 2.5 and $[H_2] \times$ 2.5 (when $[IC]$ no change) or Exp 2 and 3: rate $\times$ 10 / 7(1.43) and $[H_2] \times$ 10 / 7(1.43) (when $[IC]$ no change) | 1 | | 2(c) | Exp 4 and 5: rate $\times$ 1.4 and [IC $I$ ] $\times$ 1.4 (when [H $_2$ ] no change) or calculation | 1 | | 2(d) | (rate=) k[IСД[H <sub>2</sub> ] | 1 | | 2(e) | 62 500 or 6.25 × 10 <sup>4</sup> | 1 | | 2(f) | $ICl + H_2 \rightarrow HCl + HI$ or $ICl + H_2 \rightarrow IClH_2$ or $ICl + H_2 \rightarrow {}^{\prime}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 1 | | | $\begin{aligned} &\text{HI} + \text{IC}l \rightarrow \text{HC}l + \text{I}_2 \\ &\text{or IC}l\text{H}_2 + \text{IC}l \rightarrow 2\text{HC}l + \text{I}_2 \\ &\text{or C}l\text{H}_2 + \text{IC}l \rightarrow 2\text{HC}l + \frac{1}{2}\text{I}_2 \end{aligned}$ | 1 | | Question | Answer | Marks | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(g)(i) | part mark 1: plot a graph of concentration of [H <sub>2</sub> ] against time | 3 | | | part mark 2: constant half-life (showing it is 1st order) | | | | part mark 3: draw tangent <b>AND</b> determine gradient (on conc vs time graph) <b>or</b> draw two tangents to determine two gradients (rate) (on conc vs time graph) | | | | part mark 4: if conc 1 (at time 1) / conc 2 (at time 2) = gradient 1 / gradient 2 | | | | part mark 5: plot a graph of rate against concentration of [H₂] | | | | part mark 6: gives a straight-line through the origin of graph for part mark 5 | | | | 2 parts = 1 mark<br>3 parts = 2 marks<br>4 parts = 3 marks | | | 2(g)(ii) | [ICI] doesn't change or [ICI] only changes slightly | 1 | | 2(h) | provides an alternative route of lower activation energy / $E_a$ or to lower $E_a$ and more molecules with $E \geqslant E_a$ | 1 | | Question | Answer | Marks | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a) | change in amount / mass / concentration of reactant / product per time | 1 | | 2(b) | decrease in volume or pressure | | | 2(c) | $8.13 \times 10^4 / 81280 / 81300$ | 1 | | | $mol^{-2} dm^6 s^{-1}$ | 1 | | 2(d) | $\sqrt{(0.00231/(0.0046 \times 81280))} = 2.49 \times 10^{-3}$ | 1 | | 2(e) | 2, 1, 3 | 1 | | 2(f)(i) | 2 | 1 | | 2(f)(ii) | the total of steps 1 and 2 / the components of 2 are two NO and one H <sub>2</sub> | 1 | | 2(g)(i) | time for amount or mass or concentration to halve | 1 | | 2(g)(ii) | 0.02 at start and 0.01 after 2 seconds | 1 | | | 0.005 after 4 seconds and 0.0025 after 6 seconds | 1 | | 2(h)(i) | NO + $\frac{1}{2}$ O <sub>2</sub> $\rightarrow$ NO <sub>2</sub> or NO + O <sub>2</sub> $\rightarrow$ NO <sub>2</sub> + $\frac{1}{2}$ O <sub>2</sub> AND NO <sub>2</sub> + SO <sub>2</sub> $\rightarrow$ NO + SO <sub>3</sub> | 1 | | 2(h)(ii) | (NO is) regenerated / reformed | 1 | | 2(h)(iii) | SO <sub>3</sub> + H <sub>2</sub> O → H <sub>2</sub> SO <sub>4</sub> <b>AND</b> acid rain or consequence of this described | 1 | | Question | Answer | Marks | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a) | M1: eight electrons around N atom [N=O, N-O, N-Cl with N-O as dative] | 2 | | | M2: all other electrons correct | | | 2(b)(i) | (rate =) k[CINO <sub>2</sub> ][NO] | 1 | | 2(b)(ii) | mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> | 1 | | 2(b)(iii) | Yes AND number of moles of reactants in overall equation is the same as order in rate equation | 1 | | 2(c)(i) | <ul> <li>straight line with a negative gradient</li> <li>starting at 2.0 × 10<sup>-4</sup></li> <li>reaches at 1.8 × 10<sup>-4</sup> at 0.2 seconds</li> </ul> Award 1 mark for two points, award 2 marks for all three points | 2 | | 2(-)(::) | | | | 2(c)(ii) | 2 × 10 <sup>-5</sup> (mol dm <sup>-3</sup> ) | 1 | | 2(c)(iii) | The reaction has reached equilibrium | 1 | | Question | Answer | Marks | |----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a) | M1: the time taken for the amount/concentration or a reactant to halve | 2 | | | M2: the slowest step | | | 2(b) | <ul> <li>Use an excess of CH₃Br</li> <li>(Several experiments with) different initial [OH]</li> <li>control / equilibrate temperatures</li> <li>measure time</li> <li>find [OH⁻] by sample and titrate or use of pH probe or find [Br⁻] by sample and reference to use of Ag⁺.</li> <li>processing of results – plot graph of [OH⁻] vs rate or evaluate rate is proportional to [OH⁻] numerically</li> <li>Alternative approach:</li> <li>Use an excess of CH₃Br</li> <li>One experiment with known initial [OH⁻]</li> <li>control / equilibrate temperatures</li> <li>measure time</li> <li>find [OH⁻] by sample and titrate or use of pH probe</li> <li>or find [Br⁻] by sample and reference to use of Ag⁺ and describes how to calculate [OH⁻] .</li> <li>processing of results – plot graph of [OH⁻] vs time and look for constant half-life</li> </ul> Award 1 mark for each correctly identified point. | 4 | | Question | Answer | Marks | |----------|-------------------------------------------------------------|-------| | 2(c) | <b>M1</b> : rate = k[ester][OH <sup>-</sup> ] | 3 | | | <b>M2</b> : value of k = 0.206 | | | | M3: units mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> | | | Question | | Answer | Marks | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------| | 5(a)(i) | <b>M1</b> : using expt 2 and 3, $[NH_3] \times 2$ , rate $\times 4$ so order with respect to $[NH_3] = 2$ | | 2 | | | <b>M2</b> : using expt 1 and 2, $[CiO^-] \times 2$ and $[NH_3] \times 2$ , as rate $\times 8$ (=2 <sup>2</sup> * x) so order with respect to $[CiO^-] = 1$ | | | | 5(a)(ii) | $rate = k[NH_3]^2[ClO^-]$ | | 1 | | 5(a)(iii) | <b>M1:</b> $k = 0.256 / (0.200 \times 0.100^2)$ | k = 128 | 2 | | | M2: Units | $dm^6 mol^{-2} s^{-1}$ | | | Question | Answer | Marks | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 5(a)(iv) | curve / line showing $k$ increasing as temperature increases | 1 | | 5(b)(i) | M1: plot a graph of [I <sup>-</sup> ] against time | | | | M2: constant half-lives | | | 5(b)(ii) | $ClO^- + I^- \rightarrow IO^- + Cl^-$ | 1 | | 5(b)(iii) | step 2 and C $l$ is reduced / oxid no. decreases / oxid no. +1 $\rightarrow$ -1 or step 2 and I is oxidised / oxid no. increases / oxid no1 $\rightarrow$ +1 | 1 | 13. | Question | | | Answe | er | | | Marks | |----------|---------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|--------------------|-----------|----------|-------| | 4(a) | $CH_3COCH_3 = 1$ $I_2 = 0$ $H^+ = 1$ overall order = 2 M1 3 orders [1] M2 overall order based on their M1 [1] | | | | 2 | | | | 4(b)(i) | k = 5.40 × 10 <sup>-3</sup> / (1.50 × 1<br>k = <b>0.46(452)</b> [1] | | mol <sup>-1</sup> s <sup>-1</sup> [1] 2sf n | nin | | | 2 | | 4(b)(ii) | | | decreases | no change | increases | | 1 | | | | rate constant | ✓ | | | | | | | | rate of reaction | ✓ | | | | | | | | | | | | both [1] | | | 4(c) | draw a tangent at time, t | <b>=0</b> [1] | | | | | 2 | | | measure the gradient / s | lope of the tangent [1] | | | | | | | 4(d) | straight line graph startin | g at 0,0 and showing r | ate α [CH <sub>3</sub> COCH | <sub>3</sub> ] [1] | | | 1 | | 4(e)(i) | slowest step / reaction (in the mechanism) [1] | | | 1 | | | | | 4(e)(ii) | $2Ce^{4+} + Tl^{+} \rightarrow Tl^{3+} + 2Ce^{3+}[1]$ | | | | 2 | | | | | catalyst and (used in step | o 1 and) regenerated / r | eformed in step 3 | / end of the read | ction [1] | | | | - 1 | | | | ı | |-----|----------|----------------------------------------------------------------------------------------------|---|---| | ٠ | 1(d)(i) | <b>M1</b> from 3rd and 1st rows as [NO] $\times$ 2 , rate increases $\times$ 4, so order = 2 | 2 | | | | | <b>M2</b> from 3rd and 2nd rows as $[O_2] \times 2$ , rate also $\times 2$ , so order = 1 | | | | | 1(d)(ii) | $rate = k[NO]^2[O_2]$ | 3 | | | | | $k = \text{rate} / ([NO]^2[O_2]) = 3.5 / (0.01 \times 0.05) = 7000$ | | | | | | units: mol <sup>-2</sup> dm <sup>6</sup> s <sup>-1</sup> | | | | Question | | Answer | | Marks | |----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|-------| | 1(a) | | the order of reaction with respect to [NO] | 2 | 1 | | | | the order of reaction with respect to [O2] | 1 | | | | | the overall order of reaction | 3 | | | | ALL CORRECT [1] | | | | | 1(b)(i) | $k = (1.51 \times 10^{-4}) / (0.003^2 \times 0.0020)$<br>k = 8389 [1] min 2sf | 00) | | 2 | | | mol <sup>-2</sup> dm <sup>6</sup> s <sup>-1</sup> [1] | | | | | 1(b)(ii) | 8400 = $(6.05 \times 10^{-5}) / (x^2 \times 0.005)$<br>$x = \sqrt{(6.05 \times 10^{-5}) / (8400 \times 0.005)}$<br>$x = 0.00120 / 1.20 \times 10^{-3}$ [1] min 2 | | | 1 | | 1(c) | slow(est) [1] | | | 1 | | 1(d)(i) | correct RDS identified as step 1 | with only one S <sub>2</sub> O <sub>8</sub> <sup>2-</sup> and one I <sup>-</sup> [1] | | 2 | | | overall mechanism adds up to chemical equation and no cancellable species on LHS / RHS in each of the equations [1]<br><b>M2 DEP</b> on one $S_2O_8^{2-}$ and one $I^-$ in step 1<br>e.g. step 1 $S_2O_8^{2-} + I^- \rightarrow SO_4^{2-} + SO_4I^-$ RDS = step 1<br>step 2 $SO_4I^- + I^- \rightarrow SO_4^{2-} + I_2$ | | | | | 1(d)(ii) | no. of $t_{1/2}$ = 192/48 = 4<br>[I <sup>-</sup> ] = 0.0078/16 = <b>4.9</b> × <b>10</b> <sup>-4</sup> [1] n | nin 2sf | | 1 | 16. | Question | Answer | Marks | |-----------|----------------------------------------------------------------------------------------------------------------------------------------|-------| | 1(a)(i) | so it won't change / so it stays constant [1] | 1 | | 1(a)(ii) | constant half-life / both half-lives = 45–55 [1] two half-lives taken (evidence needed) [1] | 2 | | 1(b)(i) | first order [1] any two rows of data quoted, effect of $[H_2]$ specified [1] effect of $[I_2]$ specified and linked to first order [1] | 3 | | 1(b)(ii) | rate = $k[H_2][I_2]$ [1] | 1 | | 1(b)(iii) | $2 \times 10^{-13}$ [1] mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> [1] | 2 | | 1(c)(i) | forward reaction is faster than backward reaction and reaches equilibrium on product side / to the right [1] | 1 | | 1(c)(ii) | forward reaction is negative AND backward reaction is positive [1] | 2 | | | equilibrium position further left at higher T [1] | | | 9(c)(i) | slowest step in overall reaction | 1 | |-----------|--------------------------------------------------------|---| | 9(c)(ii) | $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O$ | 1 | | | <b>OR</b> $H_2O_2 + 2HI \rightarrow I_2 + 2H_2O$ | | | 9(c)(iii) | $H_2O_2 = 1$ <b>AND</b> $I^- = 1$ <b>AND</b> $H^+ = 0$ | 1 | | Question | Answer | Marks | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 3(b)(i) | $2AuCl_3 + 3H_2O_2 \rightarrow 2Au + 3O_2 + 6HCl$ | 1 | | 3(b)(ii) | <b>M1</b> 1st order w.r.t. AuC $l_3$ because rate $\times 2$ / doubles when concentration $\times 2$ / doubles <b>M2</b> First order H <sub>2</sub> O <sub>2</sub> $\times$ 2; AuC $l_3 \times 3$ rate $\times$ 6 so order = 1 for H <sub>2</sub> O <sub>2</sub> <b>M3</b> rate = $k$ [AuC $l_3$ ] [H <sub>2</sub> O <sub>2</sub> ] | 3 | | 3(b)(iii) | $k = 1.53 \times 10^{-1} / (0.10 \times 0.50) = 3.06$<br>dm <sup>9</sup> mol <sup>-2</sup> minute <sup>-1</sup> | 2 | #### 19. | Question | Answer | Marks | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 5(a) | measure volume / amount of oxygen formed / mass lost / and time / against time / per unit time OR measure absorbance / transmission against time / per unit time | 1 | | 5(b)(i) | time taken for the concentration / mass / amount of a reactant to fall to half (its original value) / to halve | 1 | | 5(b)(ii) | t <sub>1/2</sub> = 150 s AND evidence on graph / paper of one half-life | 1 | | 5(b)(iii) | no change | 1 | | 5(c)(i) | M1: evidence on graph of tangent AND 4 to $5\times10^{-4}$ M2: mol dm <sup>-3</sup> s <sup>-1</sup> | 2 | | Question | Answer | Marks | |----------|---------------------------------------------------------|-------| | 5(c)(ii) | (c)(i) / 0.10 AND s <sup>-1</sup> | 1 | | 5(d) | M1: $NO_2 + O_3 \rightarrow NO_3 + O_2$ | 2 | | | $\mathbf{M2:} \ NO_2 \ + \ NO_3 \ \rightarrow \ N_2O_5$ | | | Question | Answer | Marks | |-----------|-----------------------------------------------------------------------------------------------------|-------| | 7(a)(i) | the power to which a concentration of a reactant is raised in the rate equation / law | 1 | | 7(a)(ii) | <b>M1:</b> (using expt 1 and 3) as $[C_iO_2] \times 2.5$ rate $\times$ 6.25 so 2nd order | 2 | | | <b>M2:</b> (using expt 1 and 2) as [OH <sup>-</sup> ] × 4 rate × 4 so 1st order | | | 7(a)(iii) | $rate = k[C_1O_2]^2[OH-]$ | 1 | | 7(a)(iv) | M1:<br>$k = \text{rate} / [C_1O_2]^2[OH^-]$<br>$k = 7.20 \times 10^{-4} / (0.02)^2(0.03)$<br>k = 60 | 2 | | | <b>M2:</b> mol <sup>-2</sup> dm <sup>6</sup> min <sup>-1</sup> | | | Question | Answer | Marks | |----------|-----------------------------------------------------------------------------------------------------------------------------------------|-------| | 7(b)(i) | structure of phenol: C <sub>6</sub> H <sub>5</sub> OH <b>OR</b> | 1 | | 7(b)(ii) | tangent drawn correctly <b>AND</b> rate = $0.015/260 = 5.8 \times 10^{-5}$ <b>ALLOW</b> values consistent with tangent drawn at 100 sec | 1 | | 7(c) | AND half-life decreases (1st box) | 1 | | M1: first order w.r.t. $H_2O_2$ AND change in conc. $\times$ 1.5 gives increase rate $\times$ 1.5 (expts 3 / 4) M2: first order w.r.t. $IO_3$ AND change in conc. $\times$ 2 gives increase rate $\times$ 2 (as reaction first order w.r.t. $H_2O_2$ ) (expts 1 / 3) M3: zeroth order w.r.t. $H^+$ AND change in conc. has no effect on rate (expts 1/3/4 and 2) | 3 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | rate = $k[H_2O_2][IO_3^-]$ ecf | 1 | | <b>M1</b> : $k = 8.82 \times 10^{-5} \div (0.150 \times 0.140) = 4.20 \times 10^{-3}$ min 2sf ecf <b>M2</b> : mol <sup>-1</sup> dm <sup>3</sup> s <sup>-1</sup> ecf | 2 | | | <b>M2:</b> first order w.r.t. $IO_3$ - <b>AND</b> change in conc. × 2 gives increase rate × 2 (as reaction first order w.r.t. $H_2O_2$ ) (expts 1 / 3)<br><b>M3:</b> zeroth order w.r.t. $H^+$ <b>AND</b> change in conc. has no effect on rate (expts 1 / 3 / 4 and 2)<br>rate = $k[H_2O_2][IO_3^-]$ ecf<br><b>M1:</b> $k = 8.82 \times 10^{-5} \div (0.150 \times 0.140) = 4.20 \times 10^{-3}$ min 2sf ecf | | Question | Answer | Marks | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(a)(i) | (homogeneous is in the) same phase / state as reactants AND (heterogeneous is in a) different phase / state to reactants | 1 | | 2(a)(ii) | 1 $S_2O_8^{2-} + 2Fe^{2+} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$ [1]<br>2 $2I^- + 2Fe^{3+} \rightarrow 2Fe^{2+} + I_2$ [1] | 2 | | 2(a)(iii) | reactants are both anions / negatively charged AND so they repel each other OWTTE | 1 | | 2(b)(i) | rate = $k[NO]^2[O_2]$ <b>OR</b> rate = $8.6 \times 10^6 [NO]^2[O_2]$ | 1 | | 2(b)(ii) | rate = $8.6 \times 10^6 \times (7.2 \times 10^{-4})^2 \times 1.9 \times 10^{-3}$<br>rate = $8.47 \times 10^{-3}$ (mol dm <sup>-3</sup> s <sup>-1</sup> ) min 2sf | 1 | | 2(c)(i) | (reaction is) first order wrt cisplatin / overall OR rate is directly proportional to concentration of cisplatin | 1 | | 2(c)(ii) | $0.693 / 2.50 \times 10^{-5} = (2.77 \times 10^4 \text{ s})$<br><b>OR</b> In $2 / 2.50 \times 10^{-5} = (2.77 \times 10^4 \text{ s})$ | 1 | | Question | Answer | Marks | |-----------|--------------------------------------------------------------------------------------------------------------|-------| | 2(c)(iii) | initial concentration is $8.0 \times 10^{-5}$ mol dm <sup>-3</sup> — five half-life periods have elapsed [1] | 2 | | | time = $5 \times 27720 = 1.39 \times 10^{5} \text{ s}$ [1] min 2 sf | | | 3. | Question | Answer | Marks | |----|-----------|--------------------------------------------------------------------|-------| | | 2(a)(i) | $rate = k[NO][O_3]$ | 1 | | | 2(a)(ii) | $1.66 \times 10^{-8}$ [1] mol dm <sup>-3</sup> s <sup>-1</sup> [1] | 2 | | | 2(a)(iii) | not constant AND overall second order / not overall first order | 1 | | | 2(b)(i) | graph is straight line clearly parallel to x-axis | 1 | | | 2(b)(ii) | graph is straight line with negative gradient | 1 | | Question | Answer | Marks | |-----------|----------------------------------------------------------------------------------------------------------------------------------------|-------| | 2(b)(iii) | adsorption of reactants onto catalyst surface [1] bonds in reactants weaken [1] reaction occurs followed by desorption of products [1] | 3 | | 2(b)(iv) | all active sites on catalyst surface are occupied | 1 | | 4. | Question | Answer | Marks | |----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | | 3(a)(i) | evidence of tangent drawn at $t = 40 \text{ s}$ and calculation of gradient $= 0.000170 \text{ (mol dm}^{-3} \text{ s}^{-1}) \text{ min 2sf}$ | 1 | | | 3(a)(ii) | <b>M1</b> evidence of construction lines and calculation of two $t_{1/2}$ <b>OR</b> evidence of construction lines and times for halving of concentration | 2 | | | | M2 deduction: constant half-life / constant time between halving of concentration → 1st order | | | | 3(b) | <b>M1</b> two half-lives in 320 s so $t_{1/2}$ = 160 s <b>M2</b> $k$ = 0.693 / 160 = 0.00433 s <sup>-1</sup> ecf min 2sf | 2 |