1. 4037/11/M/J/22 Q4

(a)

The diagram shows the graph of y = |f(x)|, where f(x) is a cubic. Find the possible expressions for f(x).

(b) (i) On the axes below, sketch the graph of y = |2x+1| and the graph of y = |4(x-1)|, stating the coordinates of the points where the graphs meet the coordinate axes. [3]

(ii) Find the exact solutions of the equation |2x+1| = |4(x-1)|. [4]

2. 4037/22/M/J/22 Q2

The diagram shows the graphs of y = |f(x)| and y = g(x), where y = f(x) and y = g(x) are straight lines. Solve the inequality $|f(x)| \le g(x)$. [5]

3. 4037/12/O/N/22 Q2

(a) On the axes, draw the graph of $y = |3x^2 + 13x - 10|$, stating the coordinates of the points where the graph meets the axes. [4]

(b) Find the set of values of the constant k such that the equation $k = |3x^2 + 13x - 10|$ has exactly 2 distinct roots. [4]

- **4.** 4037/13/O/N/22 Q2
- (a) Show that $2x^2 + x 15$ can be written in the form $2(x+a)^2 + b$, where a and b are exact constants to be found.

- **(b)** Hence write down the coordinates of the stationary point on the curve $y = 2x^2 + x 15$. [2]
- (c) On the axes, sketch the graph of $y = |2x^2 + x 15|$, stating the coordinates of the points where the graph meets the coordinate axes. [3]

(d) Write down the value of the constant k for which the equation $|2x^2 + x - 15| = k$ has 3 distinct solutions.

5. 4037/23/O/N/22 Q1

Solve the following inequality.

$$(2x+3)(x-4) > (3x+4)(x-1)$$
 [5]

6. 4037/11/M/J/21 Q1

(a) On the axes, sketch the graph of y = 5(x+1)(3x-2)(x-2), stating the intercepts with the coordinate axes. [3]

(b) Hence find the values of x for which 5(x+1)(3x-2)(x-2) > 0. [2]

7. 4037/12/ M / J/21 Q2

(a) On the axes, sketch the graph of y = |4-3x|, stating the intercepts with the coordinate axes. [2]

(b) Solve the inequality $|4-3x| \ge 7$.

- **8.** 4037/14/M/J/21 Q2
 - (a) On the axes below, sketch the graphs of y = |x-3| and $y = \left|\frac{2}{5}x\right|$, giving the coordinates of the points where the graphs meet the axes. [3]

(b) Solve the equation $\left| \frac{2}{5}x \right| = |x-3|$. [2]

- **9.** 4037/21/M/J/21 Q3
 - (a) Solve the inequality |4x-1| > 9.

[3]

(b) Solve the equation $2x-11\sqrt{x}+12=0$.

[3]

10. 4037/22/M/J/21 Q2

On the axes, sketch the graph of y = 3(x-3)(x-1)(x+2) stating the intercepts with the coordinate axes. [3]

11. 4037/13/O/N/21 Q1

On the axes below, sketch the graph of $y = -\frac{1}{4}(2x+1)(x-3)(x+4)$ stating the intercepts with the coordinate axes. [3]

12. 4037/22/O/N/21 Q1

(a) On the axes, draw the graphs of
$$y = 5 + |3x - 2|$$
 and $y = 11 - x$. [4]

(b) Using the graphs, or otherwise, solve the inequality
$$11-x < 5+|3x-2|$$
. [2]

13. 4037/23/O/N/21 Q1

(a) On the axes draw the graphs of
$$y = |x-5|$$
 and $y = 6 - |2x-7|$. [4]

(b) Use your graphs to solve the inequality
$$|x-5| > 6 - |2x-7|$$
. [2]

14. 4037/12/M/J/20 Q1

On the axes below, sketch the graph of y = |(x-2)(x+1)(x+2)| showing the coordinates of the points where the curve meets the axes. [3]

15. 4037/22/O/N/20 Q1

Solve the inequality (x-8)(x-10) > 35.

[4]

16. 4037/23/O/N/20 Q1

Solve
$$|3x-2| = 4+x$$
.

[3]

17. 4037/21/M/J/19 Q1

Find the values of x for which $x(6x + 7) \ge 20$.

[3]

18. 4037/21/M/J/19 Q3

(i) Sketch the graph of y = |5x - 3| on the axes below, showing the coordinates of the points where the graph meets the coordinate axes.

(ii) Solve the equation |5x-3|=2-x.

[3]

[3]

19. 4037/12/O/N/19 Q4

(i) On the axes below, sketch the graph of $y = |2x^2 - 9x - 5|$ showing the coordinates of the points where the graph meets the axes. [4]

(ii) Find the values of k for which $|2x^2 - 9x - 5| = k$ has exactly 2 solutions. [3]

Solve
$$|3x+2| = x+4$$
. [3]

21. 4037/21/M/J/18 Q9

(i) Express $5x^2 - 14x - 3$ in the form $p(x+q)^2 + r$, where p, q and r are constants. [3]

(ii) Sketch the graph of $y = |5x^2 - 14x - 3|$ on the axes below. Show clearly any points where your graph meets the coordinate axes. [4]

(iii) State the set of values of k for which $|5x^2 - 14x - 3| = k$ has exactly four solutions. [2]

22. 4037/22/M/J/18 Q10

(a) (i) On the axes below, sketch the graph of y = |(x+3)(x-5)| showing the coordinates of the points where the curve meets the x-axis. [2]

(ii) Write down a suitable domain for the function f(x) = |(x+3)(x-5)| such that f has an inverse. [1]

23. 4037/12/O/N/18 Q3

(i) On the axes below, sketch the graph of y = |6-3x|, showing the coordinates of the points where the graph meets the coordinate axes. [2]

(ii) Solve |6-3x|=2. [3]

(iii) Hence find the values of x for which |6-3x| > 2. [1]

24. 4037/11/M/J/17 Q8

(i) On the axes below sketch the graphs of y = |2x - 5| and $9y = 80x - 16x^2$. [5]

(ii) Solve
$$|2x-5|=4$$
. [3]

(iii) Hence show that the graphs of
$$y = |2x - 5|$$
 and $9y = 80x - 16x^2$ intersect at the points where $y = 4$.

(iv) Hence find the values of x for which
$$9|2x-5| \le 80x - 16x^2$$
. [2]

25. 4037/22/M/J/17 Q1

Solve
$$|5x + 3| = |1 - 3x|$$
. [3]

26. 4037/22/O/N/17 Q3

Solve the inequality
$$|3x-1| > 3+x$$
. [3]

27. 4037/23/O/N/17 Q2

Solve the equation
$$|3x-1| = |5+x|$$
. [3]