4(a)
$$[f(x) =] \pm 4(x+2)(x-1)(x-3)$$

B1 for ±	
D1 for 1	

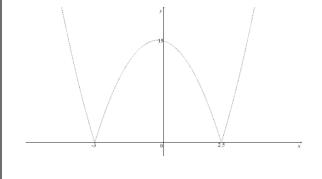
B1 for 4 **B1** for
$$(x+2)(x-1)(x-3)$$

Question	Answer	Marks	Guidance
4(b)(i)	95 0 1	3	B1 for 2 V shapes which intersect twice in the first quadrant, with vertices on the x-axis, must be straight lines, not curves. B1 for -0.5 and 1 on the x-axis B1 for 1 and 4 on the y-axis
4(b)(ii)	2x + 1 = 4(x - 1)	M1	For attempt to solve to get $x =$
	x = 2.5	A1	
	2x + 1 = -4(x - 1) oe	M1	For attempt to solve to get $x =$
	x = 0.5	A1	
	Alternative	(M1)	
	$4x^2 + 4x + 1 = 16x^2 - 32x + 16$		For attempt to square each equation and equate
	$12x^2 - 36x + 15 = 0 \text{ oe}$	(M1)	Dep on previous M mark for attempt to simplify to a 3-term quadratic equation, equated to zero and attempt to solve
	$x = 2.5 \qquad x = 0.5$	(A2)	A1 for each

f(x) = -2x + 5 or $g(x) = x - 1$ soi	B1	
Uses correct $f(x)$ and $g(x)$ to find the critical value 2 soi	B1	
Valid method to find other CV e.g. $2x-5*x-1$ oe seen, where * is = or any inequality sign	M1	FT their equations of form $y = mx + c$, for non-zero m and c; dep on first B1
Correct critical value 4 soi	A1	
$2 \le x \le 4$ mark final answer	A1	
Alternative method 1		
f(x) = 2x - 5 or g(x) = x - 1 soi	(B1)	
Uses correct $f(x)$ and $g(x)$ to find the critical value 4 soi	(B1)	
Valid method to find other CV e.g. $-2x+5*x-1$ oe seen, where * is = or any inequality sign	(M1)	FT their equations of form $y = mx + c$, for non-zero m and c; dep on first B1
Correct critical value 2 soi	(A1)	
$2 \le x \le 4$ mark final answer	(A1)	
Alternative method 2		
f(x) = -2x + 5 or 2x - 5 OR g(x) = x - 1 soi	(B1)	
Squares, equates, simplifies correct $f(x)$ and $g(x)$: $3x^2 - 18x + 24[*0]$	(B1)	where * is = or any inequality sign
Attempts to solve or factorise	(M1)	FT their 3-term quadratic from $(ax + b)^2 = (cx + d)^2$ for non-zero a, b, c and d; dep on first B1
Correct critical values 2, 4	(A1)	
$2 \le x \le 4$ mark final answer	(A1)	

	2(a)	$2\left(x + \frac{1}{4}\right)^2 - \frac{121}{8}$
--	------	---

B1 for $a = \frac{1}{4}$


B1 for
$$b = -\frac{121}{8}$$

2(b)

$$\left(-\frac{1}{4}, -\frac{121}{8}\right)$$

FTB1 for each, follow through on *their a* and *b* from (a) or **SC1** if differentiation is used ie
$$\frac{dy}{dx} = 4x + 1 = 0 \text{ then } \left(-\frac{1}{4}, -\frac{121}{8}\right)$$

2(c)

3

B1 for a correct shape. Must have the parabola part of the curve in the first and second quadrant with cusps and correct curvature and a max in the 2nd quadrant. Ignore labelling of their maximum point if incorrect coordinates

B1 for a curve $\left(\frac{5}{2},0\right)$ and (-3,0)

B1 for a curve (0, 15)

2(d) $k = \frac{121}{8}$

B1

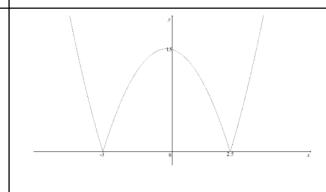
B1 FT Follow through on *their*
$$-b$$

4.

$$2\left(x+\frac{1}{4}\right)^2-\frac{121}{8}$$

B1 for
$$a = \frac{1}{4}$$

B1 for $b = -\frac{121}{8}$


2(b)

2(a)

$$\left(-\frac{1}{4}, -\frac{121}{8}\right)$$

FTB1 for each, follow through on their a and b from (a) or SC1 if differentiation is used ie $\frac{dy}{dx} = 4x + 1 = 0$ then $\left(-\frac{1}{4}, -\frac{121}{8}\right)$

2(c)

B1 for a correct shape. Must have the parabola part of the curve in the first and second quadrant with cusps and correct curvature and a max in the 2nd quadrant. Ignore labelling of their maximum point if incorrect coordinates

B1 for a curve $\left(\frac{5}{2},0\right)$ and (-3,0)

B1 for a curve (0, 15)

$$k = \frac{121}{8}$$

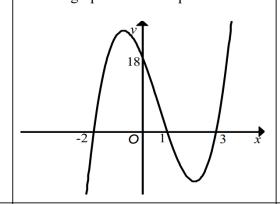
B1

FT Follow through on *their* −*b*

5. †

1		
$2x^2 - 8x + 3x - 12 \cdot 3x^2 - 3x + 4x - 4$	B1	Correctly expands all brackets * is any inequality or equals sign
$\left[0^*\right]x^2 + 6x + 8$	B1	Collects terms to correct 3-term quadratic in solvable form
[0*](x+2)(x+4)	M1	Factorises or solves <i>their</i> 3-term quadratic
-4 and -2	A1	Correct critical values
-4 < x < -2 mark final answer	A1	

). 	1(a)		3	B1 for a well-drawn cubic graph in the correct orientation with both arms extending beyond x-axis B1 for $x = -1$, $x = 2$ and $x = \frac{2}{3}$ either on the graph or stated with a cubic graph B1 for $y = 20$ either on the graph or stated with a cubic graph
	1(b)	$-1 < x < \frac{2}{3}$	B1	Must be found from a cubic graph
		x > 2	B1	

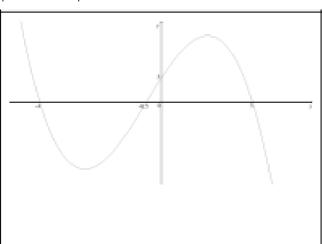

7.	2(a)		2	B1 for symmetrical V shape in the correct quadrant, touching the x-axis. Must have straight lines. B1 for $x = \frac{4}{3}$ and $y = 4$ only, either seen or stated on a modulus graph.
	2(b)	$x \le -1$, $x \ge \frac{11}{3}$ or 3.67 or better	3	B1 for -1 from a correct method. B1 for $\frac{11}{3}$ or 3.67 or better, from a correct method.

2(a)		3	B1 for the graph of either $y = \left \frac{2}{5}x \right $ or $y = x-3 $, must be straight lines, not curves. B1 for 2 correct graphs with 2 points of intersection only in the first quadrant soi. B1 for $(0, 3)$ and $(3, 0)$, must have the correct graph of $y = x-3 $.
2(b)	$\frac{2}{5}x = \pm (x-3) \text{ or } \left(\frac{2}{5}x\right)^2 = (x-3)^2$ $x = 5, x = \frac{15}{7} \text{ or } 2.14 \text{ or better}$	2	B1 for each.

3(a)	4x - 1 *9 oe and $4x - 1*-9$ oe	M1	where * could be = or any inequality sign
	OR		
	$16x^2 - 8x - 80*0$ oe soi		
	$x > \frac{5}{2}$, $x < -2$ only; mark final answer	A2	not from wrong working A1 for CV $\frac{5}{2}$, -2 oe
			If M0 then SC1 for any correct inequality with at most one extra inequality
3(b)	$(2\sqrt{x}-3)(\sqrt{x}-4)$	M1	
	or $x = u^2$ and $(2u - 3)(u - 4)$ oe soi		
	$\sqrt{x} = \frac{3}{2}, \ \sqrt{x} = 4 \text{ oe}$	A1	
	$x = \frac{9}{4}, x = 16$	B1	FT their \sqrt{x}
	Alternative	(M1)	
	$(2x+12)^2 = \left(11x^{\frac{1}{2}}\right)^2 \text{ simplified to}$		
	$4x^2 - 73x + 144 = 0$		
	solves 3 term quadratic in x	(M1)	
	$x = \frac{9}{4}, x = 16$	(A1)	
-	1	ł	

2

Correct graph and intercepts


B3

B1 for correct shape; the ends must extend above and below the *x*-axis

B1 for correct roots indicated; must have attempted a cubic shape

B1 for correct *y*-intercept indicated; must have attempted a cubic shape

11.

•

B1 for a cubic shape with a maximum in the first quadrant, a minimum in the third quadrant, extending into the second and 4th quadrants. The extensions must not curve incorrectly and not lead to a complete stationary point.

B1 for *x*-intercepts $-4, -\frac{1}{2}, 3$ either on

diagram or stated but must be with a cubic graph.

B1 for *y*-intercept 3 either on diagram or stated but must be with a cubic graph.

12.

1(a)

-6 -5 -4 -3 -2 -1 1 2 3	3 6
1(b) $x > 2 \text{ or } x < -2$	

4

M1 for \vee shape of y = 5 + |3x - 2| with vertex at $\left(\frac{2}{3}, 5\right)$

A1 for correct graph with y-intercept (0,7)

M1 for correct straight line for y = 11 - x

A1 for correct straight line with *y*-intercept (0,11)

B2

Mark final answer for B2
B1 FT for exactly two correct critical values or correct FT critical values soi, FT dependent on at least M1 in (a)

		1		I S
3.	1(a)	8 6 6 2 3 3 6 7 8A	4	M1 for $y = x-5 $: \vee shape with vertex at $(5, 0)$ A1 Correct graph with y-intercept at $(0, 5)$ M1 for $y = 6 - 2x-7 $: \wedge shape with vertex at $(3.5, 6)$ A1 Correct graph with y-intercept at $(0, -1)$
	1(b)	x < 2 or $x > 6$ final answer	B2	B1 for exactly two correct critical values or

exactly two correct critical **B1 FT** for exactly two correct FT critical values soi, FT dependent on at least M1 in (a) If the CVs are decimal allow BOD for reasonable values

14.

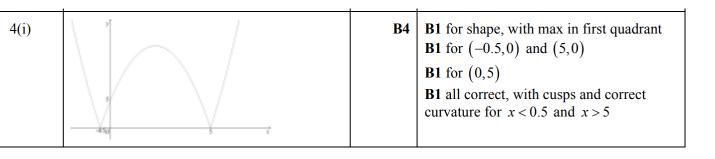
•	1	\ 1 /	B1	Shape
			B1	Correct x-coordinates
			B1	Correct <i>y</i> -coordinate and max in first quadrant

1

15.	1	$x^2 - 18x + 45 = 0$	B1	Expand and simplify to three terms.
	•	100 10 (0)		Emparia and simplify to three terms.
		$(x-15)(x-3)(=0)$ or $x = \frac{18 \pm \sqrt{18^2 - 4 \times 45}}{2}$ or $(x-9)^2 = -45 + 81$	M1	Factorise or use formula on <i>their</i> 3 term quadratic or complete the square
		x = 15 and $x = 3$	A1	
		$x < 3 \text{ or } x > 15$ or $(-\infty, 3) \cup (15, \infty)$	A1	oe Do not accept 'and'. Do not accept $3 > x > 15$. Mark final answer.

	_
7	L i
	υ.

1


x = 3	B1	
2 - 3x = 4 + x oe	M1	
x = -0.5 oe	A1	

17.

$6x^2 + 7x - 20[*0]$	M1	where * may be any inequality sign or =
Critical values $\frac{4}{3}$, $-\frac{5}{2}$	A1	
$x \le -\frac{5}{2}$ or $x \ge \frac{4}{3}$ final answer	A1	FT their critical values using outside regions

18

8.	3(i)	Correct shape 0.6 oe indicated on <i>x</i> -axis 3 indicated on <i>y</i> -axis	3	B1 correct shape must have cusp on <i>x</i> -axis B1 for each correct point There must be a sketch to award the marks for the intercepts and sketch should be continuous with one intersection only on each axis
	3(ii)	Solves $5x-3 = x-2$ oe or $(5x-3)^2 = (2-x)^2$	M1	
		$[x=]\frac{1}{4}$ oe	A1	
		$[x=]\frac{5}{6} \text{ oe}$	B 1	

4(ii)	k = 0	B1	Not from incorrect work
	Stationary point when $y = \pm \frac{121}{8}$ or ± 15.125	M1	For attempt to find y-coordinate of stationary point, must be a complete method i.e. Use of calculus Use of discriminant, Use of completing the square Use of symmetry Allow if seen in part (i), but must be used in (ii)
	$k > \frac{121}{8}$	A1	cao

20.	1	x = 1	B1	
		-3x - 2 = x + 4 oe	M1	
_		x = -1.5 oe	A1	
_		l		1

21.	9(i)	$5\left(x-\frac{7}{5}\right)^2-\frac{64}{5}$	В3	B1 for each of p , q , r correct in correct format; allow correct equivalent values. If B0 , then SC2 for $5\left(x-\frac{7}{5}\right)-\frac{64}{5}$ or SC1 for correct values but incorrect format
	9(ii)	-0.2 0 3	B4	B2 for fully correct shape in correct position or B1 for fully correct shape translated parallel to the <i>x</i> -axis B1 for <i>y</i> -intercept at (0, 3) marked on graph B1 for roots marked on graph at -0.2 and 3
	9(iii)	$0 < k < \left their \left(-\frac{64}{5} \right) \right $	B2	FT their (i) B1 for any inequality using their $\frac{64}{5}$ or max y value is their 12.8soi

10(a)(i)

,	
-3	5

B2

B1 for correct shape

B1 for roots marked on the graph or seen nearby provided graph drawn and one root is negative and one is positive

23.

\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	<u> </u>

B2

B1 for correct shape with vertex at (2,0)

Dep B1 for passing through or starting at (0,6)

3(ii)

3(i)

Either
$$6-3x=2$$

$$x = \frac{4}{3}$$

B1

For
$$x = \frac{4}{3}$$

6 - 3x = -2

		8
\boldsymbol{x}	=	_
•		3

M1

For considering -2

Or $9x^2 - 36x + 32 = 0$

M1

A1

For squaring each side and attempt to solve a 3 term quadratic = 0

$$x = \frac{4}{3}$$

A1

A1

3(iii)

 $x < \frac{4}{3}, x > \frac{8}{3}$

B1

FT on their solutions in part (ii), must both be positive and written as 2 separate statements

8(i)		В5	B1 for shape of modulus function B1 for y intercept = 5 (for modulus graph only) B1 for x intercept = 2.5 at the V of a modulus graph B1 for shape of quadratic function for $-1 \le x \le 6$ B1 for intercepts at $x = 0$ and $x = 5$ for a quadratic graph
8(ii)	$2x-5=\pm 4$	B1	one correct answer
	$x = \frac{9}{2}$	M1	solution of two different correct linear equations or solution of an equation obtained from squaring both sides or use of symmetry from first solution.
	$x = \frac{1}{2}$	A1	second correct solution
8(iii)	$16\left(\frac{1}{2}\right)^{2} - 80\left(\frac{1}{2}\right) + 36 = 4$ and $16\left(\frac{9}{2}\right)^{2} - 80\left(\frac{9}{2}\right) + 36 = 4$	B1	verification using both x values or for forming and solving $16x^2 - 80x + 36 = 0$
8(iv)	using <i>their</i> values from (ii) in an equality of the form $a \le x \le b$ or $a < x < b$	M1	
	$\frac{1}{2} \leqslant x \leqslant \frac{9}{2} \text{cao}$	A1	

2	_	

5x + 3 = 3x - 1 oe or $5x + 3 = 1 - 3x$ oe	M1	
x = -2 and $x = -0.25$ only mark final answer	A2	nfww A1 for $x = -2$ ignoring extras implies M1 if no extras seen If M0 then SC1 for any correct value with at most one extra value
Alternative method		
$(5x+3)^2 = (1-3x)^2$ oe soi	M1	
$16x^2 + 36x + 8 = 0 \text{ oe}$	A1	
x = -0.25, $x = -2$ only; mark final answer	A1	

2	^	
Z	b	_

Correctly obtain a value of $x = 2$	B1	B1 Inequality not required	
Correctly obtain a value of $x = -\frac{1}{2}$	B1	Inequality not required	
$x > 2$ and $x < -\frac{1}{2}$	B1	B1dep mark final answer(s). Allow $2 < x < -\frac{1}{2}$	

$3x - 1 = 5 + x \qquad \qquad x = 3$	B1	
3x-1 = -5 - x oe	M1	M1 not earned if incorrect equation(s) present
x = -1	A1	