For more topical past papers and revision notes visit exambuddy.org

1. 4037/11/M/J/16 Q2

(a) Solve the equation
$$16^{3x-1} = 8^{x+2}$$
. [3]

(b) Given that
$$\frac{\left(a^{\frac{1}{3}}b^{-\frac{1}{2}}\right)^3}{a^{-\frac{2}{3}}b^{\frac{1}{2}}} = a^p b^q$$
, find the value of each of the constants p and q . [2]

For more topical past papers and revision notes visit exambuddy.org

- 2. OMITTED
- **3.** 4037/21/M/J/16 Q3

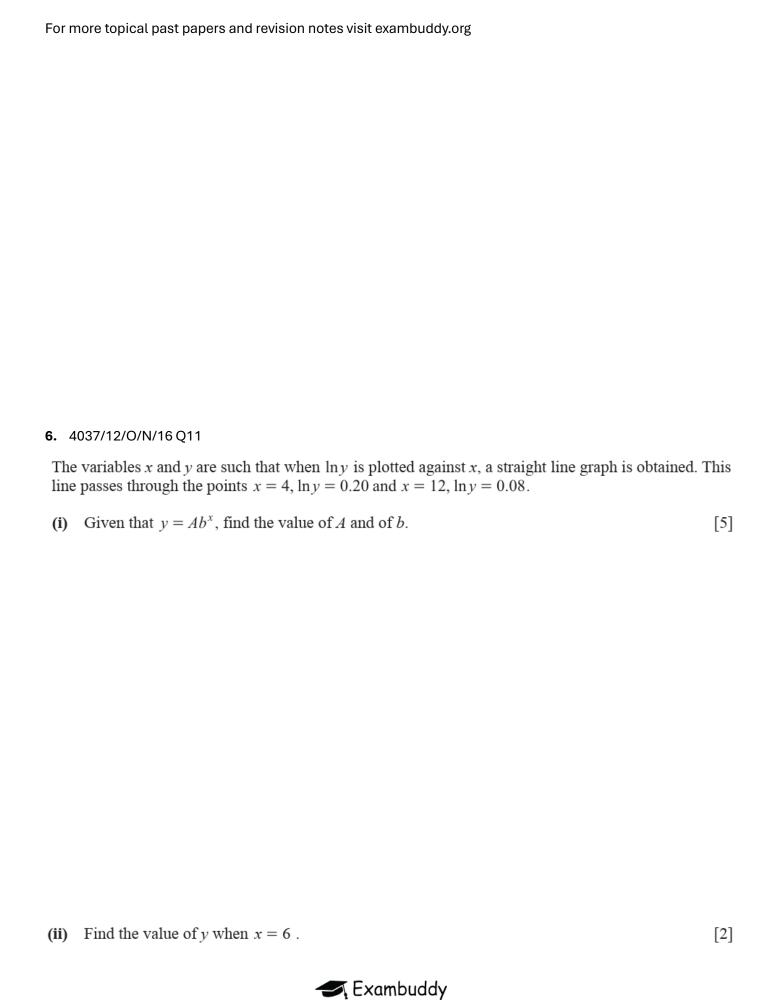
Do not use a calculator in this question.

(i) Find the value of
$$-\log_p p^2$$
. [1]

(ii) Find
$$\lg\left(\frac{1}{10^n}\right)$$
. [1]

(iii) Show that
$$\frac{\lg 20 - \lg 4}{\log_5 10} = (\lg y)^2$$
, where y is a constant to be found. [2]

(iv) Solve
$$\log_r 2x + \log_r 3x = \log_r 600$$
. [2]


4. 4037/22/M/J/16 Q10 (C)

(c) Solve $\log_2(x+1) - \log_2 x = 3$. [3]

5. 4037/12/O/N/16 Q2

By using the substitution $y = \log_3 x$, or otherwise, find the values of x for which

$$3(\log_3 x)^2 + \log_3 x^5 - \log_3 9 = 0.$$
 [6]

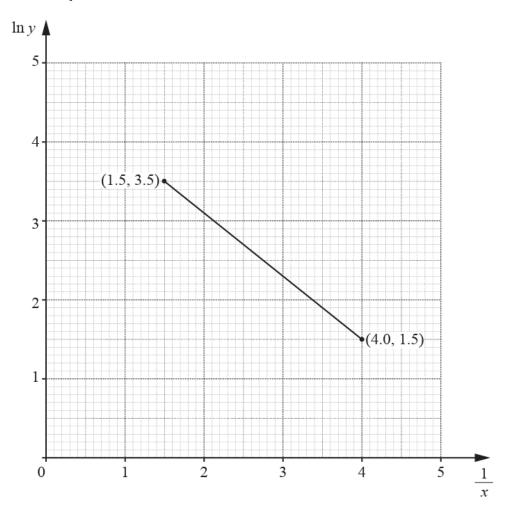
For more topical past papers and revision notes visit exambuddy.org

(iii) Find the value of x when y = 1.1.

[2]

[3]

7. 4037/13/O/N/16 Q5


(i) Given that
$$\log_9 xy = \frac{5}{2}$$
, show that $\log_3 x + \log_3 y = 5$.

(ii) Hence solve the equations

$$\log_9 xy = \frac{5}{2},$$

$$\log_3 x \times \log_3 y = -6. \tag{5}$$

8. 4037/13/O/N/16 Q7

The variables x and y are such that when $\ln y$ is plotted against $\frac{1}{x}$ the straight line graph shown above is obtained.

(i) Given that $y = Ae^{\frac{b}{x}}$, find the value of A and of b. [4]

For more topical				المستحديدات المستحديدات
For more topical	nagi nanerg ar	ia revision noti	neva tipiv pa	iniiaay arg

(ii) Find the value of y when
$$x = 0.32$$
.

(iii) Find the value of x when
$$y = 20$$
.

[2]

[2]

Fau manua taminal manat managan anal maninaina matana miait awamala malah da	
	ra
For more topical past papers and revision notes visit exambuddy.	12

9. 4037/22/O/N/16 Q3

Solve the equation
$$2\lg x - \lg\left(\frac{x+10}{2}\right) = 1.$$
 [5]

10. 4037/22/O/N/16 Q4

The number of bacteria, N, present in a culture can be modelled by the equation $N = 7000 + 2000e^{-0.05t}$, where t is measured in days. Find

[1]

(i) the number of bacteria when
$$t = 10$$
,

(ii) the value of t when the number of bacteria reaches 7500, [3]

11. 4037/23/O/N/16 Q2

Solve the equation $e^{3x} = 6e^x$. [3]

12. 4037/22/M/J/17 Q7

- (a) Given that $a^7 = b$, where a and b are positive constants, find,
 - (i) $\log_a b$, [1]
 - (ii) $\log_b a$. [1]
- **(b)** Solve the equation $\log_{81} y = -\frac{1}{4}$. [2]

(c) Solve the equation $\frac{32^{x^2-1}}{4^{x^2}} = 16$. [3]

For more topical past papers and revision notes visit exambuddy.org ${\bf 13.}~4037/22/O/N/17~Q4$

Solve the simultaneous equations

$$\log_2(x+4) = 2\log_2 y,$$

 $\log_2(7y-x) = 4.$

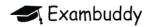
[5]

14. 4037/23/O/N/17 Q4

Solve the simultaneous equations

$$\log_3(x+1) = 1 + \log_3 y,$$

 $\log_3(x-y) = 2.$ [5]


For more topical past papers and revision notes visit exambuddy.org **15.** 4037/11/M/J/18 Q5

The population, P , of a certain	bacterium t days	after the start	of an exp	eriment is m	odelled by
$P = 800e^{kt}$, where k is a constant.					

(i)	State what the figure 800 represents in this experiment.	[1]
-----	--	-----

(ii) Given that the population is $20\,000$ two days after the start of the experiment, calculate the value of k. [3]

(iii) Calculate the population three days after the start of the experiment. [2]

(a) Write $(\log_2 p)(\log_3 2) + \log_3 q$ as a single logarithm to base 3.

[3]

(b) Given that $(\log_a 5)^2 - 4\log_a 5 + 3 = 0$, find the possible values of a.

[3]

17. 4037/12/M/J/18 Q7

A population, B, of a particular bacterium, t hours after measurements began, is given by $B = 1000e^{\frac{t}{4}}$.

(i) Find the value of B when t = 0.

[1]

(ii) Find the time taken for B to double in size.

[3]

For more topical p				
For more topical p	agt nanerg ann	revigion notes	Vieit eyamniind	w mro
i di illoro topicat p	ast papers and		VISIL CAUTIBUUU	y. 015

(iii) Find the value of B when
$$t = 8$$
.

[1]

18. 4037/12/M/J/18 Q9

(a) (i) Solve
$$\lg x = 3$$
.

(ii) Write
$$\lg a - 2 \lg b + 3$$
 as a single logarithm.

(b) (i) Solve
$$x - 5 + \frac{6}{x} = 0$$
.

For more topical	nact nanare and	d ravician natac	· vicit ovamb	uiddy ord
rui illule lupical	past papers are	u revision notes	VISIL EXAIIIN	uuuy.org

(ii) Hence, showing all your working, find the values of a such that $\log_4 a - 5 + 6 \log_a 4 = 0$. [3]

19. 4037/13/O/N/18 Q5

(i) Show that
$$\log_9 4 = \log_3 2$$
.

[2]

(ii) Hence solve $\log_9 4 + \log_3 x = 3$.

[3]

Solve

(i)
$$2^{3x-1} = 6$$
, [3]

(ii)
$$\log_3(y+14) = 1 + \frac{2}{\log_y 3}$$
. [5]

For more topical past papers and revision notes visit exambuddy.org **21.** 4037/23/O/N/18 Q6

Solve the simultaneous equations

$$\log_2(x+2y) = 3,$$

$$\log_2 3x - \log_2 y = 1.$$

[5]

22. 4037/11/M/J/19 Q7

(a) Solve
$$\log_3 x + \log_9 x = 12$$
.

[3]

For more topical past papers and revision notes visit exambuddy.org

(b) Solve
$$\log_4(3y^2 - 10) = 2\log_4(y - 1) + \frac{1}{2}$$
. [5]

23. 4037/12/M/J/19 Q3.

The number, B, of a certain type of bacteria at time t days can be described by $B = 200e^{2t} + 800e^{-2t}$.

(i) Find the value of B when
$$t = 0$$
. [1]

(ii) At the instant when
$$\frac{dB}{dt} = 1200$$
, show that $e^{4t} - 3e^{2t} - 4 = 0$. [3]

For more topical past papers and revision notes visit exambuddy.org

(iii) Using the substitution $u = e^{2t}$, or otherwise, solve $e^{4t} - 3e^{2t} - 4 = 0$. [2]

24. 4037/22/M/J/19 Q7 a,b

(a) Solve
$$\lg(x^2 - 3) = 0$$
. [2]

(b) (i) Show that, for
$$a > 0$$
, $\frac{\ln a^{\sin(2x+5)} + \ln(\frac{1}{a})}{\ln a}$ may be written as $\sin(2x+5) + k$, where k is an integer. [3]

25. 4037/12/O/N/19 Q6 (b)

(b) Solve $\log_7 x + 2 \log_x 7 = 3$.

[4]

26. 4037/13/O/N/19 Q8

(a) Given that $\log_a x = p$ and $\log_a y = q$, find, in terms of p and q,

(i)
$$\log_a axy^2$$
,

[2]

(ii)
$$\log_a \left(\frac{x^3}{ay}\right)$$
,

[2]

(iii)
$$\log_x a + \log_y a$$
.

[1]

(b) Using the substitution $m = 3^x$, or otherwise, solve $3^x - 3^{1+2x} + 4 = 0$.

[3]

27. 4037/22/M/J/20

(a) Solve the equation
$$\frac{9^{5x}}{27^{x-2}} = 243.$$
 [3]

(b)
$$\log_a \sqrt{b} - \frac{1}{2} = \log_b a$$
, where $a > 0$ and $b > 0$.

Solve this equation for b, giving your answers in terms of a. [5]

28. 4037/22/O/N/20 Q4

Solve the simultaneous equations.

$$\log_3(x+y) = 2$$

$$2\log_3(x+1) = \log_3(y+2)$$
[6]

29. 4037/22/O/N/20 Q10

The number, b, of bacteria in a sample is given by $b = P + Qe^{2t}$, where P and Q are constants and t is time in weeks. Initially there are 500 bacteria which increase to 600 after 1 week.

(a) Find the value of P and of Q.

[4]

(b) Find the number of bacteria present after 2 weeks.

[1]

(c) Find the first week in which the number of bacteria is greater than 1 000 000.

[3]

30. 4037/23/O/N/20 Q8

DO NOT USE A CALCULATOR IN THIS QUESTION.

$$\log_2(y+1) = 3 - 2\log_2 x$$

$$\log_2(x+2) = 2 + \log_2 y$$

(a) Show that
$$x^3 + 6x^2 - 32 = 0$$
.

(b) Find the roots of
$$x^3 + 6x^2 - 32 = 0$$
.

For more tonical	nast naners and	d revision notes	s visit exambuddy.org
rui illule lupical	. past papers arr	7 16/191011 HOTES	visit exambuduy.org

(c) Give a reason why only one root is a valid solution of the logarithmic equations. Find the value of y corresponding to this root. [2]

31. 4037/12/M/J/21 Q5

(a) Given that
$$\log_a p + \log_a 5 - \log_a 4 = \log_a 20$$
, find the value of p . [2]

(b) Solve the equation
$$3^{2x+1} + 8(3^x) - 3 = 0$$
. [3]

			s visit exambuddy.org
FOR MORE TODICAL R	aget nangre and	i ravician nata	e Weit Avamhildaw Ard
I OI HIOLE RODICALL	วดอบ มดมธาล ดาเบ	116000011100	ia viaii evaiiibuuuuv.oie

(c) Solve the equation
$$4\log_y 2 + \log_2 y = 4$$
. [3]

32. 4037/14/M/J/21 Q6

(a) Solve the simultaneous equations

$$\log_a(x+y) = 0,$$

$$\log_a(x+1) = 2\log_a y.$$
 [4]

(b) Given that $\log_p q^2 \times \log_q p^3 = A$, find the value of the constant A.

[3]

33. 4037/21/M/J/21 Q8

In this question, a, b, c and d are positive constants.

- (a) (i) It is given that $y = \log_a(x+3) + \log_a(2x-1)$. Explain why x must be greater than $\frac{1}{2}$. [1]
 - (ii) Find the exact solution of the equation $\frac{\log_a 6}{\log_a (y+3)} = 2$. [3]

(b) Write the expression $\log_a 9 + (\log_a b)(\log_{\sqrt{b}} 9a)$ in the form $c + d\log_a 9$, where c and d are integers. [4]

For more topical r	past papers and	l revision notes	visit exambuddy.org

34. 4037/12/O/N/21 Q3

(a) Write
$$3+2\lg a-4\lg b$$
 as a single logarithm to base 10. [4]

(b) Solve the equation
$$3\log_a 4 + 2\log_4 a = 7$$
.

[5]

35. 4037/22/O/N/21 Q5

(a) Solve the following simultaneous equations.

$$e^{x} + e^{y} = 5$$

 $2e^{x} - 3e^{y} = 8$ [5]

(b) Solve the equation
$$e^{(2t-1)} = 5e^{(5t-3)}$$
. [4]

36. 4037/23/O/N/21 Q4

(a) Solve the equation $\log_6(2x-3) = \frac{1}{2}$. Give your answer in exact form. [2]

(b) Solve the equation $\ln 2u - \ln(u - 4) = 1$. Give your answer in exact form. [3]

(c) Solve the equation $\frac{3^{\nu}}{27^{2\nu-5}} = 9$. [3]

37. 4037/12/M/J/22 Q10

(a) Given the simultaneous equations

$$1gx + 21gy = 1,$$

[4]

$$x - 3y^2 = 13,$$

(i) show that $x^2 - 13x - 30 = 0$.

(ii) Solve these simultaneous equations, giving your answers in exact form. [2]

(b) Solve the equation $\log_a x + 3 \log_x a = 4$, where a is a positive constant, giving x in terms of a. [5]

For more topical past papers and revision notes visit exambuddy.org

38. 4037/21/M/J/22 Q2

(a) Write $2 \lg x - (\lg(x+6) + \lg 3)$ as a single logarithm to base 10.

[2]

(b) Hence solve the equation $2\lg x - (\lg(x+6) + \lg 3) = 0$. [4]

_									exambudd	_
⊢∩r	mora to	เกเกลเ	naeti	nanare	วทศ	ravieian	notae	V/ICIT	avamnuaa	/ Ard
ГОП	THOIR IO	บบเลเ	เมลอเ	บลบธเจ	anu	TEMPION	110169	vioii	exambuduu.	いいと

39. 4037/13/O/N/22 Q3b

Solve the equation $\log_3 x + 3 = 10 \log_x 3$, giving your answers as powers of 3. [4]

40. 4037/22/O/N/22 Q4

Solve the equation
$$\log_3(11x-8) = 1 + \frac{2}{\log_x 3}$$
 given that $x > 1$. [5]

41. 4037/23/O/N/22 Q3

Solve the equation
$$\lg(2x-1) + \lg(x+2) = 2 - \lg 4$$
. [5]