2 $2^{4(3x-1)} = 2^{3(x+2)}$ (a)

or $4^{2(3x-1)} = 4^{\frac{3}{2}(x+2)}$ or $8^{\frac{4}{3}(3x-1)} = 8^{x+2}$

or $16^{3x-1} = 16^{\frac{3}{4}(x+2)}$

leading to $x = \frac{10}{9}$ cao

 $p = \frac{5}{3}$ q = -2

B1

B1 for a correct statement

for equating indices

M1

 $\mathbf{A1}$

B1

B1

OMITTED

3.

3	(i)	-2
3	(1)	

(b)

(ii)

 $\frac{\lg 5}{\log_5 10} = [(\lg y)^2] \text{ or } \frac{\lg 20 - \lg 4}{\lg 5} = [(\lg y)^2]$ (iii)

correct completion to $(\lg 5)^2$ isw

 $[\log_{x}]6x^{2} = [\log_{x}]600$ (iv)

x = 10 only

B1

B1

M1One log law used correctly

answer only does not score

Condone base missing

B1

 $\mathbf{A1}$

B1

4.

 $\frac{x+1}{x} = 2^3 \text{ oe www}$ (c)

 $x = \frac{1}{7}$ or 0.143 or 0.1428 to 0.1429

M2

A1

combines logs and anti-logs or B1 for one correct log move

e.g.
$$\log_2\left(\frac{x+1}{x}\right) = 3$$

or $\log_2(x+1) - \log_2(x) = \log_2 8$

or $\log_2(x+1) - \log_2(x) = 3\log_2 2$

3	$3y^2 + 5y - 2 = 0$	B1, B1	B1 for $5y$ or $5\log_3 x$, B1 for -2
	$3y^{2} + 5y - 2 = 0$ $y = \frac{1}{3}, y = -2$	M1	for correct attempt at the solution of <i>their</i> quadratic equation
	$x = 3^{\frac{1}{3}}, x = 3^{-2}$	M1	for dealing with one base 3 logarithm correctly
	$x = 1.44, x = \frac{1}{9}$	A1, A1	A1 for each

11 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, if equation not seen
	Gradient: $\ln b = -\frac{0.12}{8}$, = -0.015	M1	specifically, by correct values for A and b for use of gradient to obtain $\ln b$
	b = 0.985	A1	Allow A1 for e ^{-0.015}
	Intercept: $\ln A = 0.26$	DM1	for use of one of the given points correctly
	A = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	$\ln y = \ln A + x \ln b$	B1	
	$0.2 = 4 \ln b + \ln A$	M1	for one correct equation
	$0.08 = 12 \ln b + \ln A$	DM1	for attempt to obtain either $\ln A$ or $\ln b$ from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2		
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B1	
		M1	for correct attempt to obtain b or A , must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or

7.			
5 (i)	$\log_9 xy = \log_9 x + \log_9 y$	M1	for use of $\log AB = \log A + \log B$
	$=\frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$	M1	for correct method for change of base. Division by log ₃ 9 should be seen and not implied.
	$= \frac{\log_3 x}{2} + \frac{\log_3 y}{2} = \frac{5}{2}$		
	$\log_3 x + \log_3 y = 5$	A1	for dealing with 2 correctly and 'finishing off'
	Alternative method		
	$\log_9 xy = \frac{5}{2}$	M1	for obtaining xy as a power of 3
	$xy = 9^{\frac{5}{2}} = 3^5$	M1	for correct use of log ₃
	$xy = 9^{\frac{5}{2}} = 3^5$ $\log_3 xy = 5$ $\log_3 x + \log_3 y = 5$	A1	for using law for logs and arriving at correct answer
(ii)	$\log_3 x (5 - \log_3 x) = -6$		
	$\log_3 x (5 - \log_3 x) = -6$ $-(\log_3 x)^2 + 5\log_3 x = -6$ $(\log_3 x)^2 - 5\log_3 x - 6 = 0$	M1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic
	$(\log_3 x)^2 - 5\log_3 x - 6 = 0$	A1	for a correct quadratic equation

Ŭ. 		<u> </u>		
7	(i)	$\ln y = \ln A + \frac{b}{x}$ Gradient: $b = -0.8$ Intercept or use of equation: $\ln A = 4.7$ $A = 110$	B1 B1 B1 B1	for equation, may be implied, must be using $\ln b = -0.8$ oe for $\ln A = 4.7$ oe, allow 4.65 to 4.75 for $A = 110$, allow 105 to 116 Allow A in terms of e
		Alternative Method $3.5 = \ln A + 1.5b$ and $1.5 = \ln A + 4b$ leading to $b = -0.8$ $\ln A = 4.7$ and $A = 110$	B1 B1 B1 B1	for one equation for $b = -0.8$ for $\ln A = 4.7$ for $A = 110$ or $e^{4.7}$
		Alternative Method $e^{1.5} = Ae^{4b}$ $e^{3.5} = Ae^{1.5b}$ leading to $b = -0.8$ and $A = 110$	B1 B1 B1 B1	for $e^{1.5} = Ae^{4b}$ or $4.48 = Ae^{4b}$ for $e^{3.5} = Ae^{1.5b}$ or $33.1 = Ae^{1.5b}$ for $b = -0.8$ for $A = 110$ or $e^{4.7}$
	(ii)	When $x = 0.32$, $\frac{1}{x} = 3.125$, $\ln y = 2.2$ $y = 9$ (allow 8.5 to 9.5) or $e^{2.2}$	M1	for a complete method to obtain <i>y</i> , using either the graph, using <i>their</i> values in the equation for lny or using <i>their</i> values in the equation for <i>y</i> .

3	$2\lg x = \lg x^2$ $1 = \lg 10$	B1 B1	soi anywhere soi anywhere
		B1	soi division; logs may be removed
	$2x^{2} - 10x - 100 = 0 \rightarrow 2(x+5)(x-10) = 0$	M1	obtain correct 3 term quadratic equation and attempt to solve
	x = 10 only	A1	x = -5 must not remain.

10.

	0.5		
4 (i)	$t = 10 \rightarrow N = 7000 + 2000e^{-0.5}$		
	= 8213 or 8210	B1	Do not accept non integer responses.
(ii)	$N = 7500 \rightarrow 7500 = 7000 + 2000e^{-0.05t}$	M1	insert and make e ^{-0.05t} subject
	$e^{-0.05t} = \frac{500}{}$		
	2000		
	$-0.05t = \ln 0.25 \rightarrow t = \frac{\ln 0.25}{-0.05}$		
	$-0.05i = \text{MO}.25 \rightarrow i = -0.05$	M1	take logs and make t the subject
	= 27.7 (days)	A1	awrt 27.7
(iii)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -100\mathrm{e}^{-0.05t}$ $t = 8 \to \frac{\mathrm{d}N}{\mathrm{d}t} = \pm 67 (.0)$	M1	$ke^{-0.05t}$ where k is a constant
	dt	A1	$k = -100 \text{ or } -0.05 \times 2000$
	$t = 8 \rightarrow \frac{dN}{dt} = \pm 67 (.0)$	A1	awrt ±67 mark final answer
	dt = dt		

2	$\ln e^{3x} = \ln 6e^x$	3.54	1 6: 1: //
	$3x = \ln 6e^x$ $3x = \ln 6 + \ln e^x$	M1 M1	one law of indices/logs second law of indices/logs
	$3x = \ln 6 + x$ $x = \frac{1}{2} \ln 6 \text{ or } \ln \sqrt{6} \text{ or } 0.896$	A1	www oe in base 10
	$x = \frac{1}{2}$ In 6 or 1n $\sqrt{6}$ or 0.896	AI	www.de.iii base 10

7(a)(i)	7	B1	
7(a)(ii)	$\frac{1}{7}$ or $\frac{1}{their7}$	B1	FT their 7 must not be 1 if following through
7(b)	$y = 81^{-\frac{1}{4}}$ or $y = 3^{-1}$ or $y = 9^{-\frac{1}{2}}$ oe	M1	Anti-logs
	$y = \frac{1}{3}$ only or 0.333[3] only	A1	nfww; implies the M1; $y = \dots$ must be seen at least once If M0 then SC1 for e.g. $81^{-\frac{1}{4}} = \frac{1}{3}$ as final answer

7(c)	$\frac{2^{5(x^2-1)}}{(2^2)^{x^2}} \text{ oe or } \frac{4^{\frac{5}{2}(x^2-1)}}{4^{x^2}} \text{ oe or } \frac{32^{x^2} \times 32^{-1}}{4^{x^2}}$ or $\log 32^{x^2-1} - \log 4^{x^2} = \log 16$ oe	B1	converts the terms given left hand side to powers of 2 or 4; may have crossmultiplied or separates the power in the numerator correctly or applies a correct log law
	$2^{3x^2-5} = 16 \text{ oe} \Rightarrow 3x^2 - 5 = 4 \text{ oe}$ or $4^{\frac{3}{2}x^2 - \frac{5}{2}} = 16 \text{ oe} \Rightarrow \frac{3}{2}x^2 - \frac{5}{2} = 2 \text{ oe}$ or $\frac{8^{x^2}}{32} = 16 \text{ oe} \Rightarrow x^2 \log 8 = \log 512 \text{ oe}$ or $(x^2 - 1)\log 32 - x^2 \log 4 = \log 16 \text{ oe}$	M1	combines powers and takes logs or equates powers; or brings down all powers for an equation already in logs condone omission of necessary brackets for M1; condone one slip
	$[x=]\pm\sqrt{3}$ isw cao or \pm 1.732050 rot to 3 or more figs. isw	A1	

4	$x + 4 = y^2$	B1	
	7v - x = 16	B1	allow 24 for 16

4	$\log_3 3 = 1 \text{ or } \log_3 9 = 2$	B1	implied by one correct equation
	x+1=3y	B1	
	x - y = 9	B1	
	solve correct equations for x or y	M1	
	x=14 and $y=5$	A1	

15.

5(i)	The number of bacteria at the start of the experiment	B1	
5(ii)	$20\ 000 = 800e^{kt} \text{ so } \frac{20\ 000}{800} = e^{2k}$ or $\ln 20\ 000 = \ln 800 + \ln(e^{2k})$	M1	use of given equation and attempt to solve for e ^{2k} or use logs correctly
	$2k = \ln 25$	M1	correct method to obtain 2k
	1.61	A1	
5(iii)	$P = 800e^{3\ln 5}$	M1	Substitution of $t = 3$ in formula using their k
	=100 000	A1	answer in range 99800 to 100200

6(a)	$\left(\frac{\log_3 p}{\log_3 2} \times \log_3 2\right) + \log_3 q$	B1	

7(i)	1000	B1	
7(ii)	$2000 = 1000e^{\frac{t}{4}}$	B1	
	$t = 4 \ln 2$, $\ln 16$	M1	For $4 \ln k$ or $\ln k^4$, $k > 0$
	2.77	A1	
7(iii)	$B = 1000e^2$ = 7389, 7390	B1	

9(a)(i)	1000	B1	
9(a)(ii)	for use of power rule	M1	
	for addition or subtraction rule	M1	dep on previous M1
	$ \lg \frac{1000a}{b^2} $	A1	Allow $\lg \frac{10^3 a}{b^2}$
9(b)(i)	$x^2 - 5x + 6 = 0$	M1	For attempt to obtain a quadratic equation and solve
	x = 3, x = 2	A1	for both
9b(ii)	$(\log_4 a)^2 - 5\log_4 a + 6 = 0$	M1	For the connection with (i) and attempt to deal with at least one logarithm correctly, either 4 ^{their3} or 4 ^{their2}
	a = 64	A1	
	a = 16	A1	

5(i)	$\log_9 4 = \frac{\log_3 4}{\log_3 9}$	В1	change of base
	$= \frac{1}{2}\log_3 4$ $= \frac{1}{2}\log_3 2^2 \text{ or } \log_3 \sqrt{4}$	B1	Dep must have B1 for change of base and full working
	$=\log_3 2$		
	Alternative A		
	$\log_9 4 = 2\log_9 2$	B1	use of power rule
	$= \frac{2\log_3 2}{\log_3 9}$ $= \frac{2\log_3 2}{2\log_3 3}$ $= \log_3 2$	B1	Dep change of base and full working
	Alternative B		
	$x = \log_9 4 \implies 9^x = 4$ $9^x = 4 \implies 3^{2x} = 4$	B1	correct use of indices to reach $3^{2x} = 4$
	$\Rightarrow 3^{x} = 2 \Rightarrow x = \log_{3} 2$ $\therefore \log_{9} 4 = \log_{3} 2$	B1	Dep full working
	Alternative C		
	$\log_9 4 = \frac{\log_{10} 4}{\log_{10} 9}$	B1	change of base and use of power rule
	ı		

5(ii)	$\log_3 2 + \log_3 x = 3$ $\log_3 2x = 3$	B1	for $\log_3 2x = 3$
	$3^3 = 2x$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	
	Alternative		
	$\log_3 x = \log_3 27 - \log_3 2$	B1	
	$=\log_3\frac{27}{2}$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	

4(i)	Take logs: $(3x-1)\log 2 = \log 6$	M1	
	Make x the subject : $x = \frac{\frac{\log 6}{\log 2} + 1}{3}$ oe	A1	
	awrt 1.19 or awrt 1.195	A1	
4(ii)	$1 = \log_3 3$	B1	
	$\frac{2}{\log_{3} 3} = 2\log_{3} y$	B1	

6	$\log_2 8 = 3 \text{ or } \log 3x - \log y = \log \frac{3x}{y} \text{ (any base)}$	B1	implied by one correct equation
	or $\log_2 2 = 1$ soi		
	x + 2y = 8	B1	
	$\frac{3x}{y} = 2$	B1	
	solve correct equations for x or y	M1	
	x = 2 and y = 3	A1	

	7(a)	$\frac{\text{Method 1}}{\log_3 x + \frac{\log_3 x}{\log_3 9}} = 12$	В1	change to base 3 logarithm
		$\frac{3\log_3 x}{2} = 12$ $x = 3^8 \text{ or } \sqrt[3]{3^{24}}$	M1	simplification and dealing with base 3 logarithms to obtain a power of 3
		x = 6561	A1	
-	7(a)	$\frac{\text{Method 2}}{\log_9 x} + \log_9 x = 12$	B1	change to base 9
		$3\log_9 x = 12$ $x = 9^4 \text{ or } \sqrt[3]{9^{12}}$	M1	simplification and dealing with base 9 logarithms to obtain a power of 9

7(b)	Method 1		
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4 \frac{3y^2 - 10}{\left(y - 1\right)^2} = \frac{1}{2}$	B1	DepB1 for use of division rule
	$\frac{3y^2 - 10}{\left(y - 1\right)^2} = 2$	B1	for $\frac{1}{2} = \log_4 2$
	$y^2 + 4y - 12 = 0$	M1	Dep on first two B marks simplification to a three term quadratic.
	y = 2 only	A1	
	1		
7(b)	Method 2		
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \frac{1}{2}$	B1	use of power rule
	$\log_4(3y^2 - 10) = \log_4(y - 1)^2 + \log_4 2$	B1	for log ₄ 2
	$3y^2 - 10 = 2(y - 1)^2$	B1	Dep on first B1 use of the multiplication rule
	$y^2 + 4y - 12 = 0$	M1	Dep on first and third B marks. simplification to a 3 term quadratic
	y = 2 only	A1	

	1		
3(i)	1000	B1	
3(ii)	$\frac{dB}{dt} = 400e^{2t} - 1600e^{-2t}$	B1	
	$3 = e^{2t} - 4e^{-2t} \text{ oe}$	M1	For equating an equation of the form $ae^{2t} + be^{-2t}$ to 1200 and dividing by 400
	$e^{4t} - 3e^{2t} - 4 = 0$	A1	
3(iii)	$(e^{2t} + 1)(e^{2t} - 4) = 0$	M1	For attempt to factorise and solve, dealing with exponential correctly, to obtain $e^{2t} =$
	$t = \ln 2$, $\frac{1}{2} \ln 4$ or awrt 0.693 only isw if appropriate	A1	

7(a)	$\lg(x^2 - 3) = \lg 1 \text{ soi}$	M1	
	-2 and 2	A1	Implies M1
7(b)(i)	Two separate terms in numerator:	B1	Combines terms in numerator:
	$(\sin(2x+5)) \ln a$ or $\log_a a^{\sin(2x+5)} = (\sin(2x+5)) \log_a a$		or $\ln\left(\frac{a^{\sin(2x+5)}}{a}\right)$
	$-\ln a$ or	B1	or $(\sin(2x+5)-1)\ln a$
	$\log_a a^{-1} = -\log_a a$		or $\frac{\ln\left(\frac{a^{\sin(2x+5)}}{a}\right)}{\ln a} = \log_a\left(a^{\sin(2x+5)-1}\right)$
	$\sin(2x+5)-1$	B1	dep all previous marks awarded;

6(b)	Either	M1	For change of base.
	$\log_7 x + \frac{2}{\log_7 x} = 3$		
	$(\log_7 x)^2 - 3\log_7 x + 2 = 0$ $\log_7 x = 1$, $\log_7 x = 2$	M1	Dep for forming a 3 term quadratic equation in $\log_7 x$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base 7 logarithm correctly
		A1	For both
	Or $\frac{1}{\log_x 7} + 2\log_x 7 = 3$	M1	For change of base
	$2(\log_x 7)^2 - 3\log_x 7 + 1 = 0$ $\log_x 7 = 1, \log_x 7 = 0.5$	M1	Dep for forming a 3 term quadratic equation in $\log_x 7$ and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base x logarithm correctly
		A1	For both
	Or $\frac{\lg x}{\lg 7} + 2\frac{\lg 7}{\lg x} = 3 \text{ or } \lg 1000$	M1	For change of base
	$(\lg x)^2 - 3\lg 7(\lg x) + 2(\lg 7)^2 = 0$ $\lg x = 2\lg 7$ $\lg x = \lg 7$	M1	Dep for forming a 3 term quadratic equation in lg x and a correct attempt to solve
	x = 7, x = 49	M1	Dep on both previous M marks for dealing with a base 10 logarithm correctly
		A1	For both, must be exact

<u> </u>		i	
8(a)(i)	$\log_a a + 2\log_a y + \log_a x$	M1	for $\log_a a + \log_a x + \log_a y^2$ and $\log_a y^2 = 2\log_a y$
	1+2q+p	A1	
8(a)(ii)	$3\log_a x - \log_a y - \log_a a$	M1	for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 = 3\log_a x$
	3p-q-1 or 3p-(q+1)	A1	
8(a)(iii)	$\frac{1}{p} + \frac{1}{q}$	B1	
8(b)	$m-3m^2+4=0$	M1	for obtaining a quadratic in m or 3 ^x
	$m = \frac{4}{3}$, (-1) $x = \frac{\lg \frac{4}{3}}{\lg 3}$, $x = \frac{\ln \frac{4}{3}}{\ln 3}$ or $\lg_3 \frac{4}{3}$	M1	Dep for attempt to solve quadratic and deal with 3^x correctly
	x = 0.262 only	A1	
I	I control of the cont	I	I .

9(a)	$\frac{3^{10x}}{3^{3x-6}}$ [= 243] oe or $\log 9^{5x} - \log 27^{x-2} = \log 243$ oe	B1	
	$3^{7x+6} = 3^5$ soi oe or $5x(\log 9) - (x-2)\log 27 = \log 243$	M1	
	$x = -\frac{1}{7}$	A1	

9(b)	$\frac{1}{2}\log_a b - \frac{1}{2} = \frac{1}{\log_a b}$ or $\frac{\frac{1}{2}}{\log_b a} - \frac{1}{2} = \log_b a$	В2	B1 for bringing down the power of $\frac{1}{2}$ e.g. $\frac{1}{2}\log_a b$ or for a change of base e.g. $\frac{1}{\log_a b}$
	Clears the fraction and rearranges $\frac{1}{2}(\log_a b)^2 - \frac{1}{2}\log_a b = 1 \text{ oe}$ $(\log_a b)^2 - \log_a b - 2 = 0 \text{ oe or}$ $\det x = \log_a b x^2 - x - 2 = 0 \text{ oe}$ or $\frac{1}{2} - \frac{1}{2}\log_b a = (\log_b a)^2$ $0 = 2(\log_b a)^2 + \log_b a - 1 \text{ oe or}$ $\det y = \log_b a 2y^2 + y - 1 = 0$	M1	
	$(\log_a b - 2)(\log_a b + 1)$ oe or $(2\log_b a - 1)(\log_b a + 1)$	M1	
	$[\log_a b = 2, \log_a b = -1 \text{ or}$ $\log_b a = \frac{1}{2}, \log_b a = -1$ leading to $]$ $b = a^2, b = \text{ oe}$	A1	

_	. 0		
4	x + y = 9	B1	
	$(x+1)^2 = y+2$	B1	
	$x + (x + 1)^{2} - 2 = 9$ or $(10 - y)^{2} = y + 2$	M1	Replace <i>y</i> or <i>x</i> . Allow unsimplified using <i>their</i> three term expressions both containing <i>x</i> and <i>y</i> terms. Condone one sign or arithmetic error. Result must be a quadratic function.
	$x^{2} + 3x - 10 (= 0)$ or $y^{2} - 21y + 98 (= 0)$	A1	Correct 3 term quadratic
	x = -5 and $x = 2or y = 7 and y = 14or (x + 5)(x - 2)or (y - 7)(y - 14)$	M1	Dep on correct method to solve their quadratic
	x = 2 and $y = 7$ only	A1	Reject $x = -5$, $y = 14$ as $\log -4$ is not appropriate

<u> </u>			
10(a)	$P + Q = 500$ and $P + Qe^2 = 600$	B1	
	$Q = \frac{100}{(e^2 - 1)} = 15.7$ or 15.6	2	M1 for attempt to solve by removing P from two equations both containing 3 terms A1 awrt
	P = 484 or 485	A1	awrt
10(b)	$B = 484.3 + 15.65e^4 = 1338$	B1	Integer value rounded down from 1338 if seen.
10(c)	$e^{2t} = \frac{1000000 - 484.3}{15.65}$	M1	Make e^{2t} the subject
	$2t = \ln\left(\frac{1000000 - 484.3}{15.65}\right)$	M1	Take logs correctly where $e^{2t} > 0$ or $e^n > 0$
	$[t = 5.5(3) \text{ or } t = 5.5] \rightarrow 6^{\text{th}} \text{ week.}$	A1	nfww
1	I I	J.	I

i -	1	1	
8(a)	$x^{2}(y+1)=8$ oe	B1	
	x + 2 = 4y oe	B1	
	$x^2 \left(\frac{x+2}{4} + 1 \right) = 8$	M1	eliminate y from correct equations
	$x^3 + 6x^2 - 32 = 0$	A1	answer given
8(b)	x=2 or $x=-4$ seen or $(x-2)$ or $(x+4)$ seen	B1	
	find quadratic factor	M1	x^2 and 16 or long division to $x^2 + kx$ or x^2 and -8 or long division to $x^2 + kx$ not from expanding two linear factors
	$(x^2 + 8x + 16)$ or $(x^2 + 2x - 8)$	A1	
	$(x-2)(x+4)^2$ and $x=2,-4,-4$	A1	answer only without working earns B1 above only
8(c)	no real value for $\log_2(-4)$ or $\log_2(-4+2)$	В1	must identify specific term in one of original equations and use $x = -4$
	y=1	B1	
		•	

J 1.	1	1	,
5(a)	p = 16	2	B1 for $\log_a \frac{5p}{4} = \log_a 20$ oe B1 for 16, nfww
5(b)	$(3(3^x)-1)(3^x+3)=0$	M1	For recognition of a correct quadratic in 3^x and attempt to factorise or use quadratic formula
	$3^{x} = \frac{1}{3}$ $x = -1$	2	M1 dep for a correct attempt to solve $3^x = k$, $k > 0$ A1 for one solution only, must be from a correct solution.

5(c)	$\log_y 2 = \frac{1}{\log_2 y}$ or $\log_2 y = \frac{1}{\log_y 2}$ or $\log_y 2 = \frac{\log_a 2}{\log_a y}$ and $\log_2 y = \frac{\log_a y}{\log_a 2}$	B1	May be implied
	$4(\log_{y} 2)^{2} - 4(\log_{y} 2) + 1 = 0$ $(2\log_{y} 2 - 1)^{2} = 0, \log_{y} 2 = \frac{1}{2}$ or $(\log_{2} y)^{2} - 4(\log_{2} y) + 4 = 0$ $(\log_{2} y - 2)^{2} = 0, \log_{2} y = 2$ or $(\log_{a} y)^{2} - 4(\log_{a} 2)(\log_{a} 4)\log_{a} y + 4(\log_{a} 2)^{2} = 0$ $(\log_{a} y - 2\log_{a} 2)^{2} = 0$ $\log_{a} y = 2\log_{a} 2$	M1	For obtaining a 3 term quadratic equation in either $\log_y 2$ or $\log_2 y$ and solving to obtain $\log_y 2 = k$ or $\log_2 y = k$, may be implied or equivalent using an alternative base.
	y = 4	A1	nfww

6(a)	x+y=1	B1	
	$x+1=y^2$	B1	
	leading to $y^2 + y - 2 = 0$ or $x^2 - 3x = 0$ y = 1, $x = 0$ only	2	M1 for obtaining a 3-term quadratic equation in y or a 2-term quadratic equation in x.A1 for the one pair only
6(b)	$2\log_p q \times \frac{3}{\log_p q} = 6$	3	M1 for use of power rule to obtain either $3\log_q p$ or $2\log_p q$.
	$\operatorname{or} \frac{2}{\log_q p} \times 3\log_q p = 6$		M1 for change of base of logarithm for 1 term.
			A1 for 6 nfww.

8(a)(i)	Valid explanation e.g. This ensures the argument of both logarithms is greater than 0	B1	
8(a)(ii)	$\log_a 6 = \log_a (y+3)^2 \text{ oe}$	B1	
	$(y+3)^2 = 6$	M1	
	$y = -3 + \sqrt{6}$ oe only final answer	A1	
8(b)	Within a complete expression: Correct change of base to a : $\log_{\sqrt{b}} 9a = \frac{\log_a 9a}{\log_a \sqrt{b}}$ Correct use of power law: $\log_a \sqrt{b} = \frac{1}{2} \log_a b$ Correct use of addition/multiplication law: $\log_a 9a = \log_a 9 + \log_a a$ Correct use of $\log_a a = 1$	M3	M2 for 2 or 3 correct steps within complete expression or M1 for 1 correct step within complete expression
	leading to $2 + 3\log_a 9$. nfww	A1	

		i	1
4(a)	$2x-3=6^{\frac{1}{2}}$ oe, soi	M1	
	$x = \frac{6^{\frac{1}{2}} + 3}{2}$ or $x = \frac{\sqrt{6} + 3}{2}$	A1	
4(b)	$\ln \frac{2u}{u-4} = \ln e \text{ soi or } \ln \frac{2u}{u-4} = 1 \text{ soi}$ or $\ln 2u = \ln e(u-4) \text{ soi}$	M1	Condone one sign or bracketing error
	$\frac{2u}{u-4} = e \text{ or } 2u = e(u-4) \text{ oe}$	M1	FT their logarithmic equation
	$u = \frac{4e}{e-2}$ or $u = \frac{-4e}{2-e}$ or equivalent exact form	A1	
4(c)	$\frac{3^{\nu}}{\left(3^{3}\right)^{2\nu-5}} = 3^{2} \text{ oe soi or } \frac{9^{\frac{\nu}{2}}}{\left(9^{\frac{3}{2}}\right)^{2\nu-5}} = 9 \text{ oe soi}$ or $\log 3^{\nu} - \log 27^{2\nu-5} = \log 9 \text{ oe soi}$	В1	
	$15 - 5v = 2$ oe or $v \log 3 - (2v - 5) \log 27 = \log 9$	M1	FT their exponential equation in the same base or their logarithmic equation with any consistent base, providing their exponential or logarithmic equation has at most one sign or arithmetic error
	$v = \frac{13}{5}$ oe	A1	

10(a)(i)	xy^2 soi	B1	Simplification of the left-hand side of the first equation
	$1 = \lg 10$ soi	B1	Simplification of right-hand side of equation
	$x - 3\left(\frac{10}{x}\right) = 13$	M1	For substitution of y^2 into linear equation oe and attempt to simplify
	$x^2 - 13x - 30 = 0$	A1	AG – must see sufficient detail to justify the given answer
	Alternative		
	$y^2 = \frac{(x-13)}{3}$	(B1)	
	$\lg x + \lg \frac{\left(x - 13\right)}{3} = 1$	(M1)	For attempt at substitution in the log equation
	$\frac{x(x-13)}{3} = 10 \text{ oe}$	(B1)	
	$x^2 - 13x - 30 = 0$	(A1)	AG – must see sufficient detail to justify the given answer
10(a)(ii)	x = 15 only	B1	
	$y = \sqrt{\frac{2}{3}} \text{ or } \frac{\sqrt{6}}{3} \text{ or exact equivalent only}$	B1	isw once exact value seen
10(b)	$\log_a x + \frac{3}{\log_a x} \text{ or } \frac{1}{\log_x a} + 3\log_x a$	B1	For an appropriate change of base
	$(\log_a x)^2 - 4\log_a x + 3 = 0$ or $3(\log_x a)^2 - 4\log_x a + 1 = 0$	M1	For an attempt to obtain a 3-term quadratic equation in terms of $\log_a x$ or $\log_x a$, equated to zero.
	$\log_a x = 3 \log_a x = 1$ or $\log_x a = \frac{1}{3}, \log_x a = 1$	M1	Dep on previous M mark for correct solution of <i>their</i> quadratic equation
	x = a	A1	Must be from completely correct work
	$x = a^3$	A1	Must be from completely correct work

2(a)	$\lg \frac{x^2}{3(x+6)} \text{ oe, nfww}$	В2	B1 for any two log laws applied correctly e.g. $\lg \frac{x^2}{x+6} - \lg 3$
2(b)	$\lg \frac{x^2}{3(x+6)} = \lg 1$ or $10^0 = \frac{x^2}{3(x+6)}$	B1	FT their $\lg \frac{x^2}{3(x+6)}$ providing a single logarithm
	$x^2 - 3x - 18 = 0$	B1	dep on B2 in part (a)
	Factorises or solves their 3-term quadratic	M1	
	x = 6 indicated as only solution	A1	dep on B2 in part (a)

3(b)	$[\log_3 x + 3 =] \frac{10}{\log_3 x}$ oe or $\frac{1}{\log_x 3} [+3 = 10 \log_x 3]$ oe	B1	For change of base
	$(\log_3 x)^2 + 3\log_3 x - 10 = 0$ or $10(\log_x 3)^2 - 3\log_x 3 - 1 = 0$ $\log_3 x = -5 \log_3 x = 2$ or $\log_x 3 = -\frac{1}{5} \log_x 3 = \frac{1}{2}$	M1	Dep on previous B mark, for attempt to obtain a 3-term quadratic equation and attempt to solve to obtain 2 solutions of the form $\log_3 x = p$ or $\log_x 3 = q$

4	$\log_3\left(\frac{11x-8}{x^2}\right) = 1$ or $\log_3\left(11x-8\right) = \log_3(3x^2)$ soi OR $\log_x\left(\frac{11x-8}{3}\right) = 2$ or $\log_x\left(11x-8\right) = \log_x(3x^2)$ soi	M2	M1 for correct use change of base in a correct equation so that all logs have consistent base: $\log_x 3 = \frac{\log_3 3}{\log_3 x} \text{ or } \log_x 3 = \frac{1}{\log_3 x} \text{ oe,}$ soi OR $\log_3 (11x - 8) = \frac{\log_x (11x - 8)}{\log_x 3} \text{ oe, soi}$
	$3x^2 - 11x + 8 = 0$ oe, nfww	A1	
	(3x-8)(x-1) = 0	M1	FT their 3-term quadratic dep on at least M1 previously awarded
	$x = \frac{8}{3} \text{ or } 2.67 \text{ or } 2.666[6] \text{ rot to 3 or}$ more dp as only solution	A1	

3	$\lg((2x-1)(x+2)) = \lg \frac{100}{4} \text{ oe}$ or $10^2 = 4(2x-1)(x+2)$ oe	M2	M1 for one log law correctly applied within a correct equation e.g. $\lg 4(2x-1)(x+2) = 2$
	$2x^2 + 3x - 27[=0]$	A1	Collects terms to correct 3-term quadratic in solvable form
	(2x+9)(x-3)[=0]	M1	dep on at least M1 previously awarded Factorises their $2x^2 + 3x - 27$ or solves their $2x^2 + 3x - 27 = 0$
	x = 3 indicated as only valid solution	A1	nfww