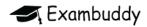
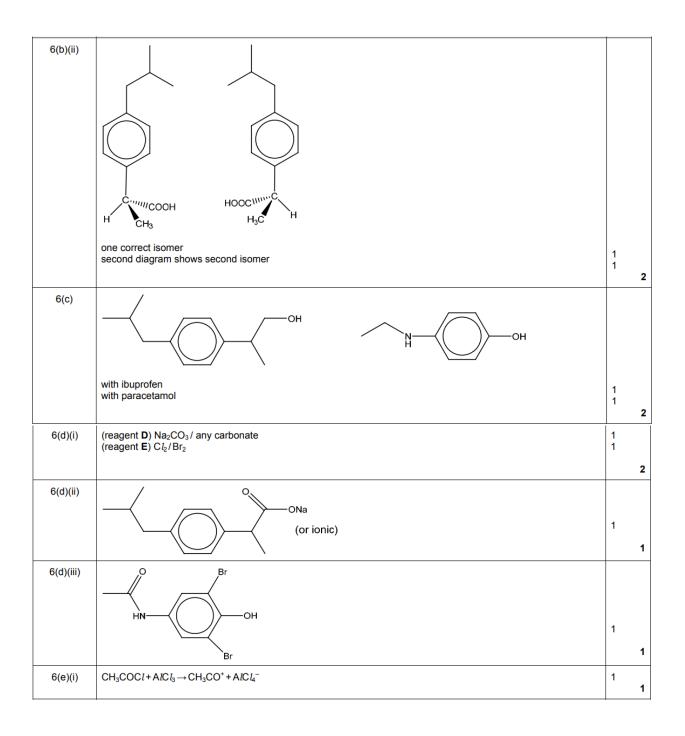
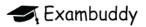
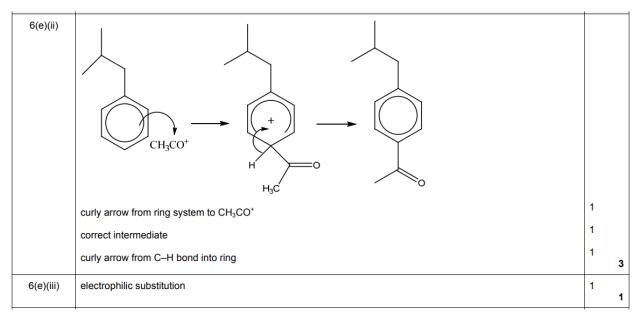

1. 9701/41/0/N/16 Q1e

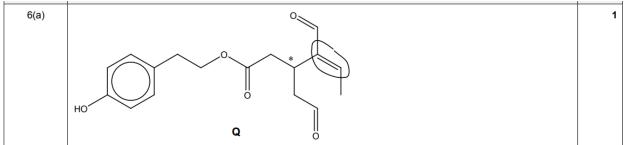

$CH_2NH_2 + 2HCl \rightarrow ClH_3NCH_2CH_2NH_3Cl$	
$CH_2CH_2NH_2 + 2H^* \rightarrow H_3N^*CH_2CH_2N^*H_3$ 1	1
ond, displayed or -CONH- 1	
e molecule with continuation bonds 1	
	2
ation / addition – elimination 1	1
ed polyalkene / eg polyethene, PVC 1	
kelite or Kevlar	1
ed polyalkene/eg polyethene, PVC	1


2. 9701/41/0/N/16 Q5d

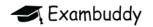


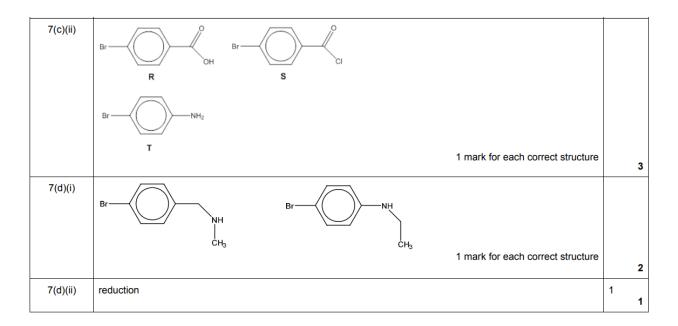
3. 9701/41/0/N/16 Q6

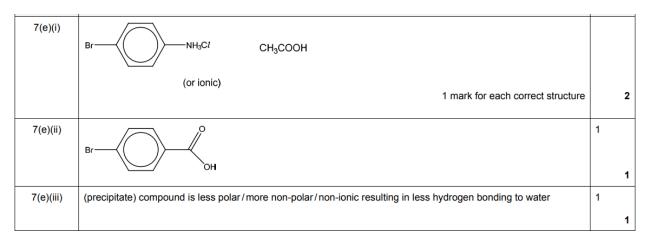

6(a)	ibuprofen: carboxylic acid/carboxyl	
	paracetamol: phenol and amide	
	any two = 1 mark all three = 2 marks	2
6(b)(i)	(chiral centre is a) carbon OR atom that has four different groups/atoms/species attached to it	1 1



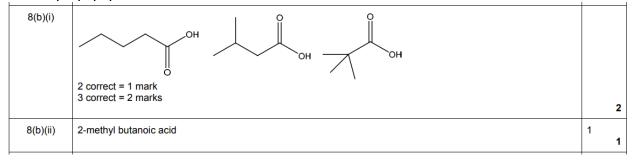
For more topical past papers and revision notes visit exambuddy.org




4. 9701/42/0/N/16 Q6a



5. 9701/42/0/N/16 Q7


7(a)(i)	electrophilic substitution	1	1
7(a)(ii)	$(Br_2 + A/Br_3) \rightarrow Br^* + A/Br_4^-$	1	
	$ \begin{array}{c} & & & \\ & $	1	
	correct intermediate curly arrow from C–H bond into ring and loss of H ⁺	1 1	4
7(b)	both amide	1	1
7(c)(i)	step 1, A/Br ₃ and CH ₃ Br OR other suitable halogen instead of Br	1	
	step 2, KMnO₄ or potassium manganate(VII)	1	
	step 3, conc. H ₂ SO ₄ and conc. HNO ₃	1	
	step 4. Sn and (conc.) HCl (heat)	1	
			4

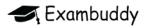


6. 9701/42/0/N/16 Q8b

7. 9701/41/M/J/16 Q6d

6 (a) (i)	$C_6H_5NO_2$ + $6e^-$ + $6H^+ \longrightarrow C_6H_5NH_2$ + $2H_2O$		
(ii)	$2C_6H_5NO_2$ + 14HC l + 3Sn \rightarrow 2 $C_6H_5NH_3Cl$ + 3SnC l_4 + 4H ₂ O		
(d)	phenylamine is less basic that ethylamine the lone pair on N is delocalised over the ring making it less available for reaction with a proton/ δ + H		
(e) (i)	step 1: $HNO_2 OR (NaNO_2 + HCl)$ at $T \le 10 °C$ step 2: boil/heat in water		
(ii)	E is $N \equiv N$ (Cl ⁻)	[1]	

8. 9701/41/M/J/16 Q9

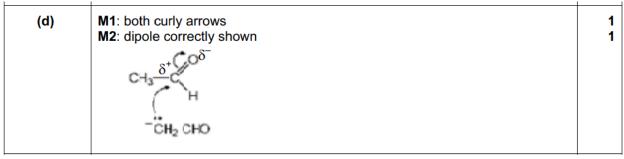

9	(a)		[1] [1]
	(b)	step 1: $C_6H_5COCl + AlCl_3$ (+ heat) step 2: $CH_3CH_2Cl + AlCl_3$ (+ heat) step 3: $Br_2 + light (or heat)$ step 4: $KCN + heat (in ethanol)$ step 5: $H_3O^2 \cap RH^2$ in $H_2O \cap RHCl$ (aq) etc AND heat/boil/reflux	
	(c)	step 1: electrophilic substitution OR nucleophilic substitution step 5: hydrolysis OR nucleophilic substitution	[1] [1]

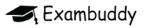
9. 9701/42/M/J/16 Q3

3	(a)	(i)	(CH ₃) ₂ CHCN	1	
		(ii)	reaction 1: NH_3 (in ethanol) under pressure (+ heat) or heat NH_3 in a sealed tube		
			reaction 2: KCN/NaCN and heat/reflux (in ethanol)		
			reaction 3: $H_2 + Ni \text{ or } LiAlH_4$		
	(b)	(i)	$CH_{3}CH_{2}NH_{2} + H_{2}O \rightarrow CH_{3}CH_{2}NH_{3}^{*} (+) OH^{-}$		
		(ii)	ii) ethylamine is more basic than ammonia because of electron-donating (alkyl/ethyl/R) group (in ethylamine) which makes the <u>lone pair</u> (on N) more available for donation		
			or the lone pair (on N) more available for a proton / H ⁺		

10. 9701/42/M/J/16 Q6a

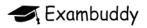
6 (a)	essential mark M1 the reactants/substrate has a shape complementary/ specific to <u>active site</u> – can be awarded from a labelled diagram as below or diagrams showing this specificity clearly	3		
	any two of M2: reactants/substrate binds to/fits into the <u>active site</u> of the enzyme M3: (Interaction with site) causes a specific bond to be weakened, (which breaks) or lowers activation energy M4: forms an E-S complex M5: products released from enzyme/active site			
	labelled diagrams			
	(products)			

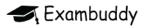

11. 9701/42/M/J/16 Q9


9 (a)	CON CO2H	1		
(b)	H is J is J is J J J J J J			
(c)	step 1: $(CH_3)_2CHCH_2Cl + AlCl_3$ (+ heat) step 2: $CH_3COCl + AlCl_3$ (+ heat) step 3: HCN + NaCN or HCN + base or HCN + CN ⁻ (steps 4 and 5 could be reversed on J) If J1 step 4 then step 5 J2 step 5 then step 4 step 4: H_3O^* + heat/aqueous HCl + heat step 5: conc H_2SO_4 + heat/conc H_3PO_4 + heat or Al_2O_3 + heat step 6: H_2 + Ni (+ heat)	6		
(d)	step 1: electrophilic substitution <i>or</i> alkylation step 6: reduction/hydrogenation/addition	2		

12. 9701/42/F/M/16 Q1c

(c) (i)	reaction 1: Cl_2 and UV light; reaction 2: $AlCl_3$, Cl_2 (NOT aqueous);	
(ii)	(free) radical substitution	
(iii)	Cl +	1

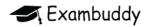

13. 9701/42/F/M/16 Q4d


7 (a) (i)	weakened/the phenoxide anion is stabilised/ethanol has an electron donating group M2: p orbital/lone pair of electrons on O can be delocalised over/overlaps with ring					
(ii)	reagent	conditions	Structure	3		
	HNO ₃	dilute, 5°C				
	Br ₂	aqueous (I: temperature)	Br Br			
(iii)	electrophilic substitution			1		
(b) (i)	white precipitate/solid			1		
(ii)	between 0°C and 10°C			1		
(iii)	(iii) M1: double bond between nitrogen atoms M2: rest of molecule					

14. 9701/42/F/M/16 Q7

15. 9701/42/F/M/16 Q8

8 (a)	 P amide Q ketone R secondary alcohol Q = carbonyl and R = alcohol so 	cores [1]	1 1 1			
(b)	(b) $OH H CH_3$ $H_3C H_3 CH_3$ $OH H CH_3$					
(c) (i)	see line on diagram in (b)		1			
(ii)	ОН					
(d)	reagent alkaline iodine solution universal indicator 2,4-dinitrophenylhydrazine Tollens' reagent	observation yellow ppt. formed blue/purple colour formed yellow/orange ppt formed no reaction	3			
(e) (i)	LiAlH4		1			
(ii)	(ii) CH (must be skeletal)					
(iii)	CH ₃ CH ₃ CH ₃ CH ₃		1			

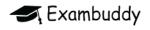


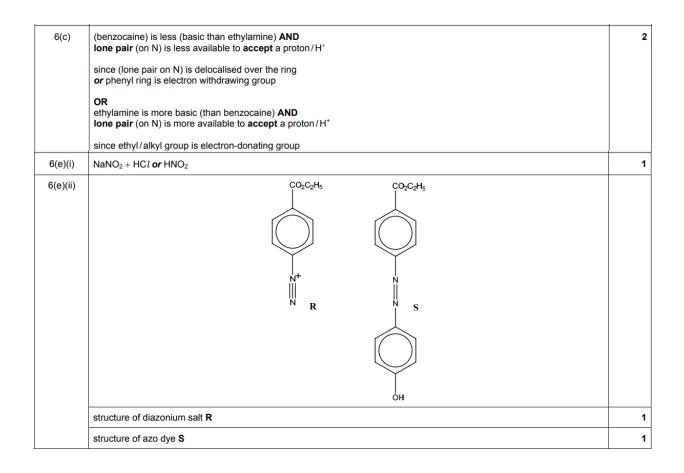
16. 9701/42/F/M/16 Q9

9 <mark>(</mark> a) (i)	polyester : <i>Terylene</i> / polylactic acid (PLA) / polyamide : nylon / <i>Kevlar</i> / Nomex			1	
(ii)	water or hydrochloric a	acid/hydrogen	chloride		1
(b) (i)	polymer biodegradable				2
		Α	yes		
		В	yes		
		с	no		
		D	yes]	
(ii)	HOCH ₂ CH ₂ OH and	$ \begin{array}{c} $		2	

17. 9701/41/0/N/17 Q5

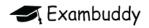
5(a)	nitrile; alkene; chloro; benzene/arene	2
5(b)		1
	addition (polymerisation)	1

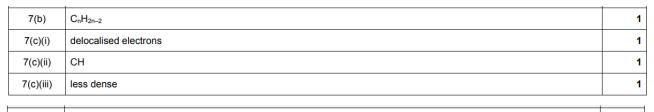



For more topical past papers and revision notes visit *exambuddy.org*

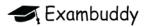
5(c)	reagent	structure of product	type of organic reaction	8
	excess Br ₂ (aq)		(electrophilic) addition	
	excess hot, conc. MnO₄⁻(aq)	С ^С HO, COOH ог CN (1] + [1]	oxidation	
	excess hot, aqueous HC <i>l</i>		hydrolysis	
	excess H₂/Pt catalyst	both CH_2NH_2 formed [1] both arene and alkene reduced [1]	reduction/ hydrogenation	
		structures [6]	2 correct for 1 mark total [2]	

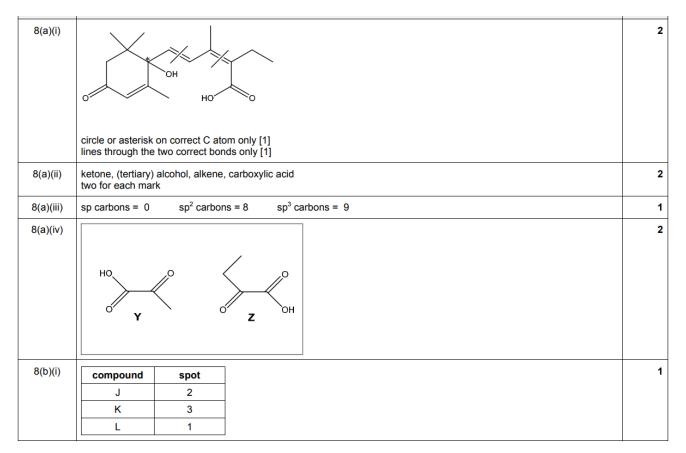
18. 9701/41/0/N/17 Q6


	1
NO ₂	
$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-$	1
any three from:	3
Point 1: bonds/electrons are partially delocalised in T or delocalised/ π system/ π bonding extends over only five carbons	
Point 2: four π -electrons in the (delocalised system of T) or methylbenzene has (two) more π -electrons/(two) more delocalised electrons	
Point 3: contains a carbon that is sp ³ hybridised in T or (all the) carbons are sp ² hybridised in methylbenzene	
Point 4: one carbon has a bond angle of 109.5°/tetrahedral (in T) or (C-C) bond strengths /lengths are not all the same or not all the bond angles are 120° (in T)	
4-aminobenzoic acid	1
step 1 Sn + HCI[1] concentrated/reflux/heat [1] step 2 CH ₃ COCI[1]	6
step 3 KMnO ₄ /manganate(<u>VII</u>)/MnO ₄ ⁻ (acidified/alkaline) and heat [1] step 4 aqueous HC <i>l</i> and heat [1] step 5 ethanol, H ₂ SO ₄ , concentrated/reflux/heat [1]	
	$\begin{array}{l} & & \qquad $

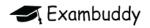


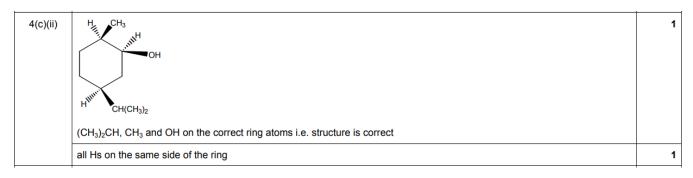
19.9701/42/0/N/17 Q3


3(b)	reagent	structure of product	type of organic reaction	8
	Na	Na ⁺ O ⁻ NH ₂ NH ₂ (1]	redox or reduction	
	excess Br ₂ (aq)	HO Br HO HI HO HI HI [1]	(electrophilic) substitution	
	excess CH₃COC <i>l</i>	Acylated OH [1] acylated NH(2) [1]	condensation (or addition + elimination)	
	excess H ₂ /Pt catalyst	HO NH ₂	reduction or hydrogenation or addition	


20. 9701/42/0/N/17 Q7b

7(d)(i)	$R \longrightarrow C \longrightarrow C^{-}$ $R \longrightarrow C \longrightarrow C^{-}$ $2 \text{ curly arrows [1]}$ $dipole [1]$ intermediate [1]	R"	→ R-	-C=CC	,R' ``R"		3
7(d)(ii)	nucleophilic additio	n					1
7(d)(iii)	C₂H₅—C≡C-	—н 🦯					2
	Q	[1]	[1] R				
7(e)		CH₃CHO	HCO₂H	CH ₃ COCH ₃	HO ₂ CCO ₂ H]	4
	hot acidified MnO ₄ ⁻ (aq)	~	~	×	~		
	alkaline I ₂ (aq)	✓	×	✓	×]	
	Tollens' reagent	\checkmark	~	×	×		



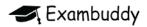

21. 9701/42/0/N/17 Q8

22. 9701/41/M/J/17 Q4

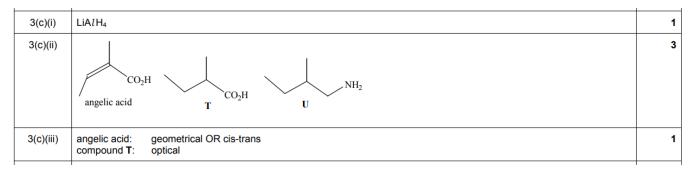
4(a)(i)	optical, because it contains a / one chiral C-atom or chiral C-atoms or chiral atom / centre or C* indicated or C with 4 different groups			
4(a)(ii)	$C_{10}H_{14}O + 3H_2 \longrightarrow C_{10}H_{20}O$ correct formulae	1		
	balancing	1		
4(b)(i)	electrophilic substitution	1		
4(b)(ii)	step 3 reduction	1		
	step 5 substitution / hydrolysis	1		
4(b)(iii)	step 1 (CH ₃) ₂ CHC <i>l</i> + A <i>l</i> C <i>l</i> ₃ / A <i>l</i> Br ₃ / FeC <i>l</i> ₃ / FeBr ₃	1+1		
	step 2 $HNO_3 + H_2SO_4$ conc (T < 55 °C)	1		
	step 3 Sn + HCl	1		
	step 4 HNO ₂ (or NaNO ₂ + HCl) (at T < 10 $^{\circ}$ C)	1		
	the two temperatures for steps 2 and 4	1		
4(c)(i)	H_2 + Pt or H_2 + Ni + heat or pressure	1		

23.9701/41/M/J/17 Q5

5(a)		J	к	L	М	
		amine methyl ketone	aromatic amine aldehyde	amine methyl ketone	amide	
	J and L correct					1 + 1
	K correct					1+1
	M correct					1
5(b)(i)	hydrolysis					1
5(b)(ii)	\mathbf{P} is C ₆ H ₅ NH ₂					1
	Q is CH ₃ CH ₂ CO ₂	Na				1
5(c)	J is	NH or	NHCH ₃ or	NH ₂		1
	K is	Сно NH ₂				1
	L is	NH ₂				1
	M is O N O					1
	K&L only: two ch	niral atoms shown				1
5(d)	W is $C_6H_5CO_2Na$					1

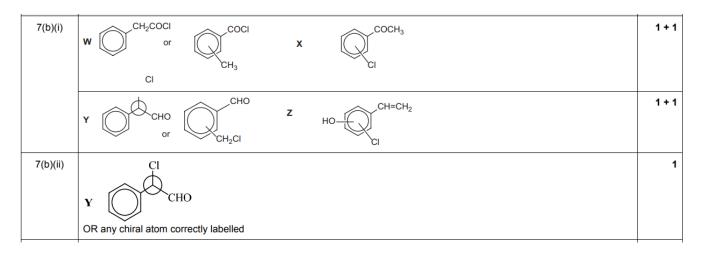


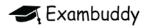
24. 9701/41/M/J/17 Q6c


6(c)(i)	$C_{\theta}H_{5} \xrightarrow{C_{1}\delta^{-}}_{CH_{3}} \xrightarrow{H} \xrightarrow{C_{\theta}H_{5}} \xrightarrow{C_{\theta}}_{CH_{3}} \xrightarrow{C_{\theta}}_{C$	
	C-Cl dipole and first curly arrow	1
	intermediate cation	1
	OH [−] with lone pair and curly arrow	1
6(c)(ii)	Beginning with candidate's mechanism in (c)(i):	1
	If S _N 1: racemate / mixture of / two optical isomers will be formed, because: the intermediate is planar / has a plane of symmetry / OH ⁻ can approach from top or bottom or from any direction	
	If S _N 2: one optical isomer because attack always from fixed direction / from same side / the "configuration" always inverts / there is an asymmetric transition state	

25.9701/42/M/J/17 Q2d

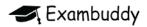
2(d)(i)	either $S_N 1$ or $S_N 2$ mechanism	
	$\begin{array}{c} \mathbf{I} : & \overset{CH_3}{\underset{ a }{\overset{ a }}{\overset{ a }}}}}}}}}}$	
	s_{N1} $c_{2}H_{5}$ $c_{2}H_{5}$ $c_{2}H_{5}$ $c_{2}H_{5}$ c_{1}	
	C-Cl dipole AND C-Cl curly arrow	1
	intermediate cation OR 5-valent transition state (charge essential)	1
	$\mathrm{I}^{\scriptscriptstyle -}$ with lone pair AND other curly arrow	1
2(d)(ii)	If S_N1 in 2(d)(i) mixture of / two optical isomers will be formed, AND the intermediate can be formed by the I ⁻ approaching from top or bottom plane	1
	If S_N2 in 2(d)(i) one optical isomer AND attack always from fixed direction / opposite side	




26. 9701/42/M/J/17 Q3c

27. 9701/42/M/J/17 Q7

7(a)	w	X	Y	Z	5
	acyl chloride / COC/	methyl ketone / CH3CO group aryl chloride	aldehyde / CHO chloro(alkane) / RC <i>l</i>	Alkene / C=C phenol / C ₆ H ₅ OH aryl chloride	
	0–1 [0]; 2 [1]; 3 [2]; 4 [3]; 5 [4	ł]; 6–8 [5]			

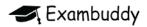

28. 9701/42/M/J/17 Q8

8(a)(i)	step 1 electrophilic substitution ignore acylation	1
	step 2 nucleophilic addition	1
8(a)(ii)	hydrolysis	1

8(a)(iii)	step 1 Cl CH ₂ CHO (allow Br, I for Cl)	1
	Al Cl ₃	1
	step 2 HCN + NaCN	1
	step 3 heat in H_3O^* / heat $H^*(aq)$	1
	step 5 NH ₃ under pressure (+ heat) or heat NH ₃ in a sealed tube	1
8(a)(iv)	with NaOH(aq)	1 + 1
	with HCl(aq) +NH ₃ HO (1]	1
	with $Br_2(aq)$ Br HO HO HO HO HO HO HO HO	1

29.9701/42/F/M/17 Q5

5(a)(i)	$(CH_3)_3C-CU/(CH_3)_2C = CH_2$	1
	AlCl ₃ + heat	1
5(a)(ii)	(UV) light	1
5(a)(iii)		1
5(a)(iv)	ammonia / NH ₃	1
	heat in sealed tube / heat under pressure	1
5(b)	$C_{10}H_{13}NH_2 + H_3O^* \Rightarrow C_{10}H_{13}NH_3^* + H_2O$	1
5(c)	in compound \mathbf{H} , the alkyl groups are electron donating/have a positive inductive effect, so it is more basic than NH_3	1
	in phenylamine, the lone pair (of N) is delocalised over the aryl group/benzene ring, so phenylamine is less basic than $\rm NH_3$	1



30. 9701/42/F/M/17 Q7

7(a)	RO HO HO O HO O H	1
7(b)(i)	H⁺(aq) + heat	1
7(b)(ii)	hydrolysis	1
7(b)(iii)	CH ₃ OH	1
7(c)(i)	white precipitate	1
7(c)(ii)	$C_{14}H_{19}O_6N$ + 3NaOH $\rightarrow C_{14}H_{16}O_6NNa_3$ + 3H ₂ O	2
7(d)(i)	no change/colour remains orange	1
7(d)(ii)	Image: Relation of the second displayed two repeat units	2 1 1
7(e)(i)	seven	1

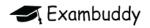
31. 9701/42/F/M/17 Q8

8(a)	oxidation of -OH/alcohol to C=O/ketone/carbonyl	1
8(b)(i)	dehydration / elimination	1
8(b)(ii)	heat with $A_{l_2}O_3$ OR heat with H_3PO_4/H_2SO_4	1
8(b)(iii)	$\begin{array}{c} & & \\$	2
8(c)	phenol	1
	ketone	1

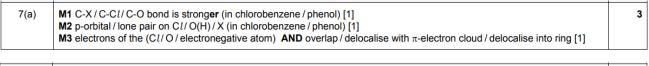
C-C bonds are non-polar / have no dipole so cannot be hydrolysed [1]

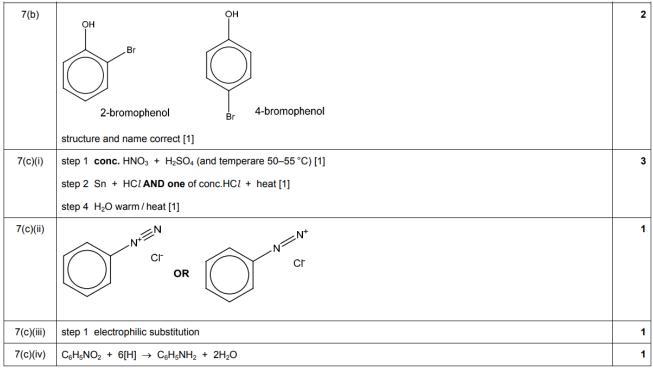
 $\begin{array}{l} \textbf{M1} \; \underline{\text{Hydrolysis}} \text{ using acid / base / alkali / enzymes [1]} \\ \textbf{M2} \; action \; of \; UV \; \text{light [1]} \end{array}$

32. 9701/41/0/N/18 Q5

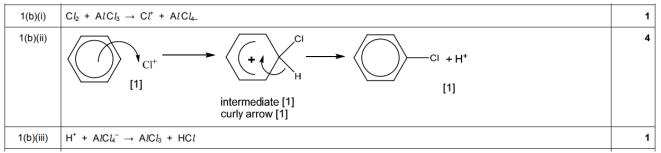

5(d)(i)

5(d)(ii)

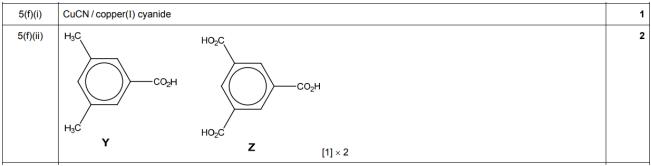

	/41/U/N/18 U5				
5(a)(ii)		О Си Н		—_N │ H	2
	one amide bond displaye	ed in full [1]			
	rest of the structure - on	e repeat unit only	y [1]		
5(b)	[1] for each correct tick				2
		σ-bonds only	π -bonds only	both σ - and π -bonds	
	bonds broken		~		
	bonds formed	~			
5(c)	С ₆ H ₅ H CH ₃ H 				2
	M1 length of chain with t M2 continuation bonds [ooth monomers [1]	1]		


1

2

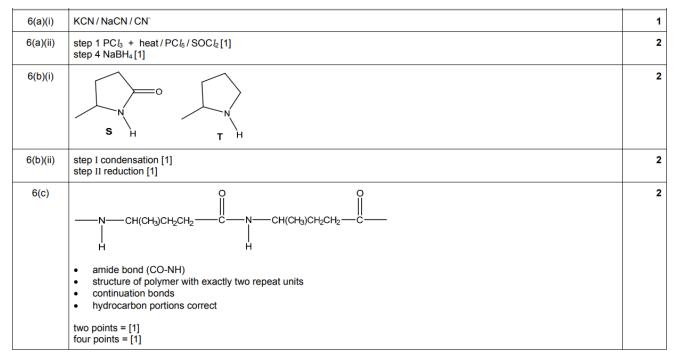


33.9701/41/0/N/18 Q7

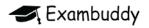




34. 9701/42/0/N/18 Q1b



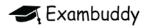
35. 9701/42/0/N/18 Q5f



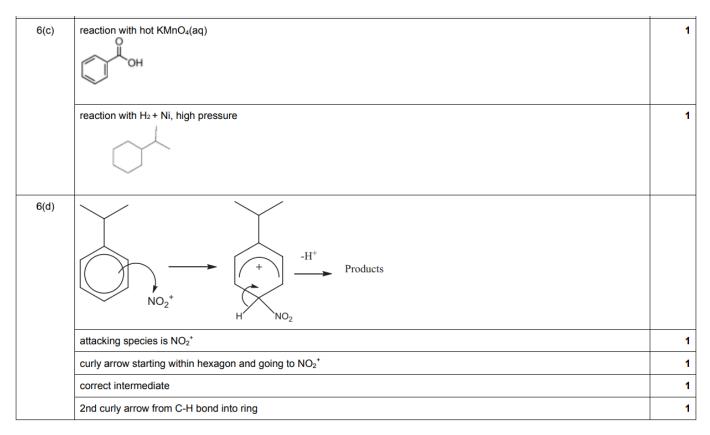
36. 9701/42/0/N/18 Q6

37.9701/42/0/N/18 Q7

7(a)(i)	$C_{15}H_{10}N_2O_2$			1
7(a)(ii)	C N H-CO-O- linkage	(1) whole molecule correct [1]	о н н N	2
7(a)(iii)		intermolecular force	group(s) involved	2
	-	hydrogen bonding	NH	
		VDW forces / Induced dipole-dipole forces / polar forces	-C ₆ H ₄ CH ₂ - allow benzene / aromatic rings	
	M1 hydrogen bondir M2 NH group for hy	ng [1] drogen AND second correct IMF [1]		
7(b)		type of polymer	example	3
	-	synthetic polyamide	nylon / Kevlar	
	-	synthetic polyester	Terylene	
		conducting polymer	polyacetylene / polyethyne	
		non-solvent based adhesive	epoxyresins / superglue	
	one mark [1] for eac	h correct answer up to a maximum of [3]	

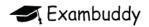


38. 9701/42/0/N/18 Q8


8(a)(i)	species with an unpaired electron	1
8(a)(ii)	$NH_2 + Cl \rightarrow NH_2Cl$	1
8(b)(i)	$H \xrightarrow{\bullet} XX \xrightarrow{XX} H$ $X \xrightarrow{\bullet} X$	1
8(b)(ii)	sp ³ AND 100–107°	1
8(d)	ethylamine > ammonia > phenylamine [1] ethyl group is electron donating group [1] p-orbital from N in phenylamine overlaps with π -ring system OR lone pair on N is delocalised into benzene ring [1] basicity linked to ability of N to accept a proton [1]	4

39. 9701/41/M/J/18 Q6

6(a)(i)	D 2-chloropropane	1
	E hydrogen chloride	1
6(a)(ii)	(Friedel-Crafts) alkylation	1
6(b)(i)	AlCl ₃ or FeCl ₃	1
6(b)(ii)		1
6(b)(iii)	sunlight or UV OR T>100 °C	1
6(b)(iv)		1



For more topical past papers and revision notes visit exambuddy.org

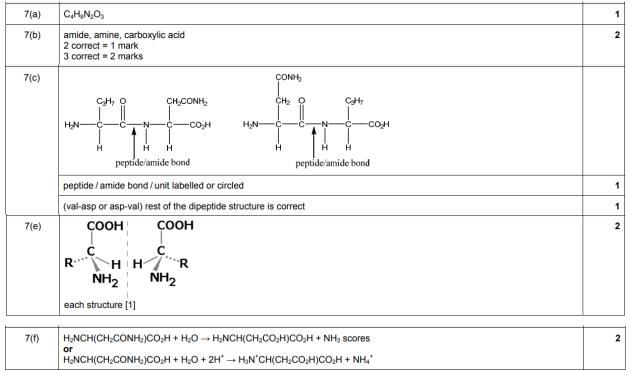
40. 9701/41/M/J/18 Q7

7(a)	$2C_3H_7OH + 2Na \rightarrow 2C_3H_7ONa + H_2$	1
7(b)(i)	propanoic acid, phenol, propan-1-ol	1
7(b)(ii)	 propan-1-ol: O-H bond strengthened by positive inductive effect of alkyl group OR propoxide ion is destabilised by positive inductive effect of alkyl group 	2
	 phenol: O-H bond weakened by negative inductive effect of ring OR phenoxide ion is stabilised by delocalisation of oxygen lone pair into ring 	
	 propanoic acid: O-H bond weakened by negative inductive effect of C=O OR propanoate ion is stabilised by delocalisation of minus charge by C=O 	
	1 mark for a correct explanation, max 2 marks	
7(c)	Tollens' reagent or Fehling's reagent	1
	methanoic acid gives a silver mirror/solid with Tollen's reagent OR red / orange ppt / solid with Fehlings' reagent	1
7(d)	PCl_5 or PCl_3 (+heat) or $SOCl_2$ (added to propanoic acid)	1
	product of first step:	1
	add product of first step to phenol in NaOH	1

. 9701/41/M/J/18 Q8

8(a)	correct chiral centre labelled only * OH OH C ₁₅ H ₂₂ O ₄	1
8(b)	C ₁₅ H ₂₂ O ₄	1
8(c)(i)	O CH3 CH3 COOR O H COOH CH3	1
8(c)(ii)	CO ₂	1
	oxidation / oxidative cleavage	1
8(c)(iii)	CH ₃ COCO ₂ H	1

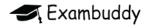
. 9701/41/M/J/18 Q9


9(a)	C ₈ H ₁₁ O ₃ N	1
9(b)	yes, as it has a chiral C atom	1
9(c)(i)	(phenyldiazonium ion is stabilised because) positive charge is delocalised by ring / positive charge is spread over ring	1
9(c)(ii)	HO OH OH	1
	N ₂	1

. 9701/42/M/J/18 Q6

6(a)	any two from KOH / potassium hydroxide or K ₂ O / potassium oxide	2
	correct products: (K) hydrogen, (KOH) water, (K ₂ O) water	1
6(b)(i)	bond circled between N = N	1
6(b)(ii)	phenylamine and HNO ₂	1
	T=10 °C or below and diazonium ion as $[C_6H_5N_2^*]$	1
	add 2-naphthol in aqueous NaOH / alkali	1
6(c)(i)	dilute / aqueous nitric acid / HNO ₃ (aq) (at room temp.)	1
	any two from concentrated (acid) needed sulfuric acid / H ₂ SO ₄ needed higher T needed ora	1
6(c)(ii)	p-orbital(s) / lone pair on oxygen / OH group delocalises into / over ring	1

44. 9701/42/M/J/18 Q7



45. 9701/42/M/J/18 Q8

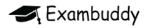
8(a)	0, 2, 1	1
8(b)	6	1
8(c)	4	1

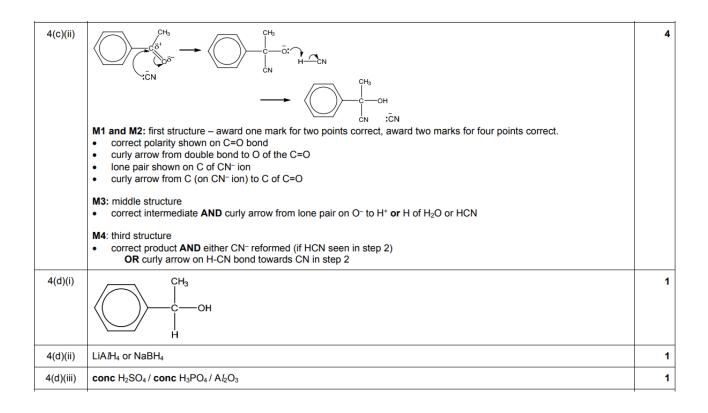
46. 9701/42/F/M/18 Q7

7(a)(i)		3
	$ \begin{pmatrix} & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 &$	
7(a)(ii)	 for addition polymerisation: ΔS will be negative, as many gas molecules are combining to form one (large) molecule for condensation polymerisation:	2
7(b)(i)	$(\text{RCO}_2\text{H} + \text{H}_2\text{NR'} \longrightarrow) \text{RCONHR'} + \text{H}_2\text{O}$	1
7(b)(ii)	broken: C-O, N-H formed: C-N, O-H	2
7(d)(i)	heat with (conc.) KMnO ₄	1
7(d)(ii)	Sn and HC <i>l</i> heat + conc. (then add NaOH)	2

7(e)	intermolecular force	group(s) involved
	hydrogen bonding	N-H and C=O (of amide)
	induced dipole / van der Waals	benzene rings

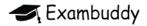
47. 9701/42/F/M/18 Q8b


8(b)(i)	step 1 heat with $AlCl_3 + (CH_3)_2CHCl$ or $CH_3CH=CH_2$ step 2 heat with $AlCl_3 + CH_3COCl$ step 3 NaOH + I ₂ (or Cl_2) (then H ⁺) step 4 LiAlH ₄ (in dry ether)	4	
8(b)(ii)	step 2 electrophilic (aromatic) substitution step 4 reduction	2	

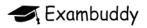

48. 9701/42/F/M/18 Q9b

9(b)	benzoic acid > methylphenol > phenylmethanol	3
	methylphenoxide anion has delocalisation of the lone pair on oxygen over the ring	
	benzoic acid has an (extra) electronegative oxygen or electron withdrawing C=O	
9(c)	 step 1 treat benzoic acid with SOC l₂ or PC l₅ to make the acyl chloride formula is C₆H₅COC l step 2 dissolve the methylphenol in NaOH(aq) (and shake with the benzoyl chloride) 	3

49. 9701/41/0/N/19 Q4


4(a)	M1: CH ₃ COCl or	ethanoyl chloride	
	M2: AlCl ₃ catalys	st	
4(b)	reagent	organic product	name of mechanism
	Cl	COCH ₂ CI chlorine atom(s) in side chain only	free radical substitution
	nitric / sulfuric	O ₂ N One only –NO ₂ group added at 3 position	electrophilic substitution
	Br	no reaction with Br ₂	
	Award 1 mark for	r each correct entry to the table	e [5]
4(c)(i)	nucleophilic addi	tion	

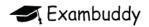
50. 9701/41/0/N/19 Q8


8(a)(i)	any one from: • OH- / NaOH; aqueous / dilute; heat under reflux • H* / HC1 / H ₂ SO ₄ , aqueous / dilute; heat under reflux • protease or named protease; water; T = 30° – 40°C	1
	all three points in each bullet [1]	
8(a)(ii)	HO HO HO HO HO HO HO HO HO HO HO HO HO H	2

8(b)	 permanent dipole-dipole one group that will have a δ⁺ and another with δ⁻ e.g. CO, NH, COOH, OH BOTH [1] 	3
	 hydrogen bonds one group that will have a H⁵⁺, e.g. NH, OH and another with lone pair, e.g. NH, COOH, OH, CONH₂ BOTH [1] 	
	 ionic bonding NH₃* <u>and</u> COO⁻ BOTH [1] 	
	 ALLOW London forces C₄H₉ groups or parts of these alkyl groups 	
8(c)(i)	any structure containing one COOH / COCI and NH ₂ groups in the same molecule [1]	1
8(c)(ii)	HOCH ₂ CH ₂ OH [1] ethan(e)-1,2-diol [1] ecf for diols	4
	HO ₂ CCO ₂ H or C <i>l</i> OCCOC <i>l</i> [1] ethan(e)dioic acid or ethan(e)dioyl chloride [1] ecf for diacids / diacyl chlorides	

51. 9701/41/0/N/19 Q9

1	1	
9(a)(i)	$RNH_2 + H^* \rightarrow RNH_3^* \text{ OR } RNH_2 + HCl \rightarrow RNH_3Cl [1]$	1
9(a)(ii)	weaker AND lone pair of N delocalised into benzene ring [1]	1
9(b)	$H_{hN} = \prod_{H_{h}} \prod_{H_$	3
9(c)(i)	2 [1]	1
9(c)(ii)	CH_2 next to ester and terminal CH_3 are circled [1]	1
9(c)(iii)	 one less peak the lost peak is NH₂ / aryl amine protons exchange with D OR protons are labile OR valid equation √√ for two marks [2] 	2
9(d)	$C_6H_4NH_2^+$ and $CH_3CH_2CH_2CH_2^+$ [1]	1

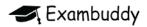


52.

7(a)(i)		2
7(a)(l)	 two or more repeat units correct orientation of groups on all four rings and rings correct 	-
	 trailing bonds shown 	
	amide links all correct	
	Award 1 mark for two points, award 2 marks for all four points	
7(a)(ii)	polyamide and condensation	1
7(a)(iii)	yes and can be hydrolysed	1
7(a)(iv)	PCl ₃ or PCl ₅ or SOCl ₂	1
7(a)(v)	M1: conc nitric acid + conc sulfuric acid	2
	M2: Sn + HCl	
7(b)(i)	M1: sequence / order of amino acids	3
	M2: α -helix or β -sheet	
	M3: folding of chain or 3-D shape	
7(b)(ii)	covalent bonds / peptide bonds / amide bonds	1
7(b)(iii)	M1: hydrogen bonds	2
	M2: between C=O and N–H	

53. 9701/42/0/N/19 Q8

8(a)	bromine / Br ₂ and uv / light / heat	
8(b)	1,1-dibromoethane	
8(c)	NCCH ₂ CH ₂ CN / CH ₂ CNCH ₂ CN	
8(d)	M1: KCN / NaCN / CN-	
	M2: boil/heat/reflux and ethanol as solvent	
8(e)(i)	acidified manganate(VII) or dichromate(VI)	
8(e)(ii)	carbon dioxide and water	
8(f)	 M1: most acidic: hexanoic acid > phenol > hexan-1-ol :least acidic the other O atom in CO₂H group of hexanoic acid either withdraws charge from OH group or is electronegative and weakens O–H bond or 	
	 stabilises resultant anion/negative ion / -CO₂⁻ group/carboxylate ion benzene / aromatic / C₆H₅ ring in phenol <u>delocalises</u> either lone pair on O atom and weakens O-H bond or lone pair on resultant anion/negative ion / phenoxide ion this stabilises resultant anion negative ion / -CO₂⁻ group/carboxylate ion the alkyl group in hexan-1-ol donates electrons this strengthens O-H bond 	
	Award 1 mark for each bullet point identified.	

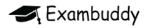


54. 9701/42/0/N/19 Q9

9(a)(i)	10	1
9(a)(ii)	120	1
9(b)(i)	correct acid chloride	1
9(b)(ii)	NH ₃ or ammonia	1
9(c)	M1: (C ₅ NH ₄)COOH or (C ₅ NH ₅)*COOH	2
	M2 : (C ₅ NH ₄)COO ⁻ (Na ⁺) or (C ₅ NH ₄)COONa	
9(d)(i)	LiAlH ₄	1
9(d)(ii)	M1: most basic: X > phenylamine > nicotinamide :least basic	3
	M2: LP in X cannot be delocalised	
	M3: LP in phenylamine <u>delocalised</u> over the benzene ring or LP in amide <u>delocalised</u> (more effectively) by C=O	

55. 9701/41/M/J/19 Q7

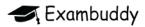
7(a)(i)	M1: reduction / hydrogenation	
	M2: H ₂ + Ni / Pt catalyst	
7(a)(ii)	M1: benzene (120°) and cyclohexane (109.5°)	
	M2: as π -bonds are transformed into σ -bonds	
7(b)(i)	$\overbrace{SO_{3}H^{*}}^{+} \qquad \qquad$	
7(b)(ii)	$HSO_4^- + H^+ \rightarrow H_2SO_4$	
7(c)	M1: C ₁₂ H ₂₅ Br and halogen carrier e.g. A <i>l</i> Br ₃ (+ heat)	
	M2: electrophilic substitution	



56. 9701/41/M/J/19 Q9

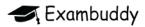
9(a)	$M1: CH_3COCl > CH_3CH_2Cl > C_6H_5Cl$	3
	 M2 & M3 any two from: in C₆H₅Cl (no hydrolysis) C-Cl bond is part of delocalised system OR p-orbital on Cl overlaps with π system OR electrons from Cl overlap with π system 	
	 CH₃COC<i>l</i> carbon in C-C<i>l</i> bond is more electron deficient since it is also attached to an oxygen atom (ora) or C-C<i>l</i> bond strength is weakest in CH₃COC<i>l</i> (ora) 	
	CH ₃ CH ₂ Cl carbon in C-Cl bond strengthened by positive inductive effect of alkyl group	

9(b)(i)	partially ionised and proton acceptor					1
9(b)(ii)	$H \xrightarrow{V} CI \xrightarrow{CI} CI \xrightarrow{V} CI \xrightarrow{CI} OT \xrightarrow$			1		
9(c)(i)		σ-bonds only	π -bonds only	both σ - and π -bonds		1
	bonds broke	ו		✓	-	
	bonds forme	t		✓		
	Both ticks correct					
9(c)(ii)	O N 	O ∥ CH₂)₅—C——				2
	M1: amide link					
	M2: rest of the structure					
9(d)		СН3				2
	or CH ₃ CCI=CH ₂ and C ₂ H ₅ CH=CHCH	each correct struct	ure scores one m	nark		


9(e)	C-C bo	onds are non	-polar / polyalkenes cannot be hydrolysed and polyamides can be broken down by hydrolysis	1
9(f)(i)		OH		1
9(f)(ii)	M1:	step 1:	$CH_3COCl + AlCl_3[1]$	3
	M2 :	step 2:	NaBH₄ / LiA <i>I</i> H₄ [1]	
	M3 :	step 3:	conc. H ₂ SO ₄ , heat [1]	

57. 9701/42/M/J/19 Q6

6(a)	 any three points from: 3 × [1] bond angle = 120° and shape is (hexagonal ring) planar / (trigonal) planar carbons are sp² hybridised contains <u>delocalised electrons</u> in the π bonds / system sp² orbitals between C-H / C-C overlap to form σ bonds a p orbital from each carbon atom overlap sideways with each other above and below the ring forming π bonds ALLOW labelled diagrams for bullets 1–5 	3
6(b)(i)	$HNO_3 + H_2SO_4 \rightarrow HSO_4^{-} + H_2O + NO_2^{+}$	1
	or HNO ₃ + 2H ₂ SO ₄ \rightarrow 2HSO ₄ ⁻ + H ₃ O ⁺ + NO ₂ ⁺ [1]	
6(b)(ii)	$\begin{array}{c} \downarrow \\ \downarrow $	3
6(b)(iii)	$HSO_4^- + H^+ \rightarrow H_2SO_4[1]$	1
6(b)(iv)	Sn + conc. HCl (+ heat) [1] reduction [1] IGNORE redox	2
6(c)(i)	C ₁₅ H ₁₅ NO ₂ [1]	1
6(c)(ii)	amine and carboxylic acid both [1]	1
6(c)(iii)	amount of 2,3-dimethylphenylamine = 5.00 / 121 = 0.0413 mol [1]	2
	amount of metenamic acid = 0.0413 mol	


s(c)()		-	
	amount of mefenamic acid = 0.0413 mol mass of mefenamic acid = 0.0413 × 241 = 9.96 / 9.95 g 3sf required [1] ECF		
6(d)	3° carbocations are more stable than 2° carbocations [1]	2	
	due to the methyl group acting as an electron donating group (leading to an increase in electron density on the cation stabilising it) [1]		

58.9701/42/M/J/19 Q7

30. 77017	42/11/3/17 @7	
7(a)(i)	A= leucine B= glutamic acid both [1]	1
7(a)(ii)	greater and more soluble in the solvent / mobile phase OR greater and form more H-bonds with the solvent [1]	1
7(b)(i)	$H_2NCH_2CO_2H + HCl \rightarrow Cl^{+}H_3N^{+}CH_2CO_2H$ [1]	2
	$H_2NCH_2CO_2H$ + NaOH $\rightarrow H_2NCH_2CO_2$ -Na ⁺ + H_2O [1]	
7(b)(ii)	H ₃ N*CH ₂ CO ₂ -[1]	2
	Proton is transferred from the CO_2H group to the NH_2 group [1]	
7(c)	$H_2 N \xrightarrow{CO_2 H} H_{H_3 C} NH_2$ two non-superimposable mirror images for alanine drawn [1]	1

7(d)(i)	NH ₃ (in ethanol) heat in a sealed tube [1]	2
	nucleophilic substitution [1]	
7(d)(ii)	acidity of $Cl_3CCO_2H > ClCH_2CO_2H > CH_3CO_2H$ [1]	3
	any two of: Cl is electronegative / electron withdrawing group AND Cl ₃ CCO ₂ H has more / 3 Cl groups [1]	
	weakens O-H bond so more likely to ionise / dissociate OR negative charge on anion is more stabilised OR charge / electron density on COO ⁻ decreases so anion is (more) stabilised [1]	
	CH ₃ is electron donating so O-H bond is stronger so less likely to ionise in CH ₃ CO ₂ H OR CH ₃ CO ₂ H has no -I group so O-H bond is stronger and less likely to ionise [1]	
7(e)	$H_{2N} \xrightarrow{O} CO_{2}H$ $HO \xrightarrow{H_{2}N} \xrightarrow{H} CO_{2}H$ $HO \xrightarrow{H_{2}N} \xrightarrow{H} CO_{2}H$ $HO \xrightarrow{H} CO_{2}H$ $HO \xrightarrow{H} CO_{2}H$	3
	One mark for each structure. [1] [1] [1]	

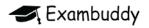
59.9701/42/M/J/19 Q8

8(a)	4-chloro-3,5-dim	nethylphenol OR 3,5-dim	ethyl-4-chlorophenol [1]		
	ALLOW 2,6-dim	nethyl-4-hydroxychlorobe	enzene and 2-chloro-5-hydroxy-1,3-dimethylb	benzene	
8(c)		reagent	organic product structure	type of reaction	
		Na	NaO Cl CH ₃ or ionic	redox	
		CH3COC1		Condensation	
		Br₂(aq)	HO Br CH ₃ CH ₃	(electrophilic) substitution	
			CH ₃	(electrophilic) substitution	

HO

type of reaction • ✓ • ✓ [2]

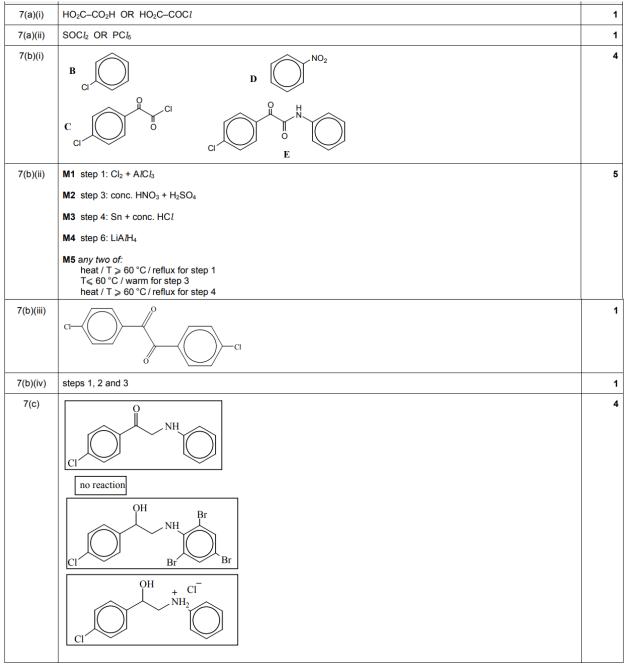
=N Cľ

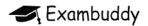

сн₃

сı

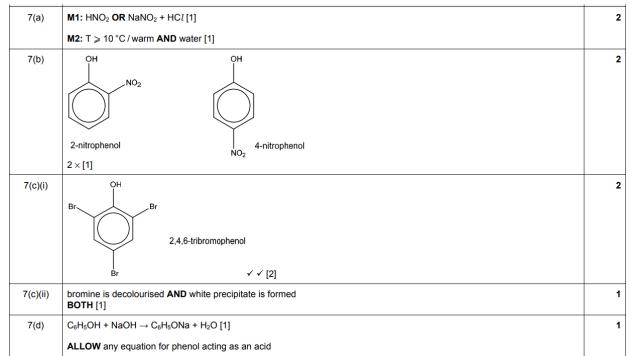
60. 9701/42/F/M/19 Q5

each structure $[1] \times 4$

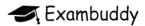

5(a)(i)	$\begin{array}{c} \overbrace{\text{NC}}_{\text{NC}} \overbrace{\text{CO}_2\text{CH}_3}^{\text{NC}} \overbrace{\text{CO}_2\text{CH}_3}^{\text{NC}} \end{array}$ M1 correct C–C backbone (with correct side groups) M2 continuation bonds and two repeat units	2
5(a)(ii)	addition	1
5(a)(iii)	Any two of: permanent dipole (attraction): C, N, O, OR CO, CN, CO ₂ CH ₃ , OCH ₃ H-bonding: N, O OR CO, CN	2
= 4 \ \ \ \	London/van der Waals: N, C, H, O OR CH ₃ , CN, CO ₂ CH ₃ , C–C chains	
5(b)(i)	Y CH ₃ COCO ₂ CH ₃ Z CH ₃ C(OH)(CN)CO ₂ CH ₃	2
5(b)(ii)	M1/M2 step 1: CH ₃ OH and (conc) H ₂ SO ₄ + heat	4
	M3 step 2: HCN + NaCN catalyst	
	M4 step 3: T > 100° C / heat with Al ₂ O ₃ (or heat with c. H ₂ SO ₄)	



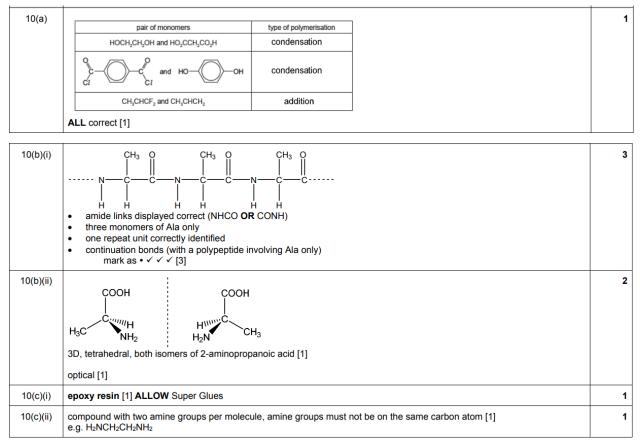
61. 9701/42/F/M/19 Q6


6(a)	Any two of: chloro amine / amino alcohol / hydroxyl / phenol benzene / phenyl ring / aryl / arene	1
6(b)(i)	ketamine is acting as a base	1
6(b)(ii)	carbonyl group	1

62. 9701/42/F/M/19 Q7



63. 9701/41/0/N/20 Q7



64.9701/41/0/N/20 Q8

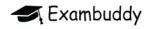
8(a)(i)	HBr / hydrogen bromide [1]	1
8(a)(ii)	H = H = H = H = H = H = H = H = H = H =	2
8(a)(iii)	electrophilic substitution [1]	1
8(b)(i)	reagent: chloroethane / bromoethane / iodoethane OR formula [1]	2
	catalyst: FeCl ₃ / AlCl ₃ etc. [1]	
8(b)(ii)	СООН	1
	[1] ALLOW C ₆ H ₅ COONa	
8(b)(iii)	step 3 = LiA <i>I</i> H ₄ [1]	2
	step 4 = Pt AND $H_2[1]$	



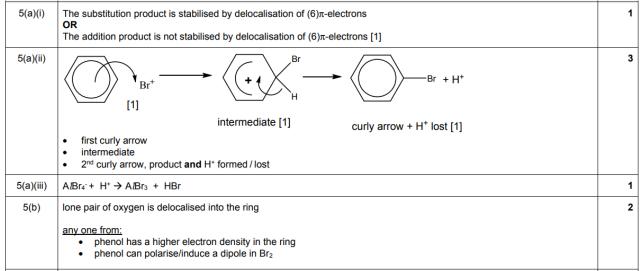
65. 9701/41/0/N/20 Q10

66.9701/42/0/N/20 Q6

6(a)	ethanamide – ethanoic acid – trichloroethanoic acid [1] • ethanamide is neutral / not a proton donor • chlorine is electronegative / electron withdrawing [1] • O-H bond weakened / anion stabilised • correct statement linking acid strength to H ⁺ donation [1]	3
6(b)(i)	methanoic acid [1]	1
6(b)(ii)	methanoic and ethanedioic acids [1]	1
6(c)(i)	CH ₃ COC <i>l</i> [1] ethanoyl chloride [1]	2
6(c)(ii)	Step 1: PCl ₅ /PCl ₃ /SOCl ₂ or names [1] Step 2: NH ₃ /ammonia [1]	2

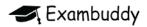

67.9701/42/0/N/20 Q7

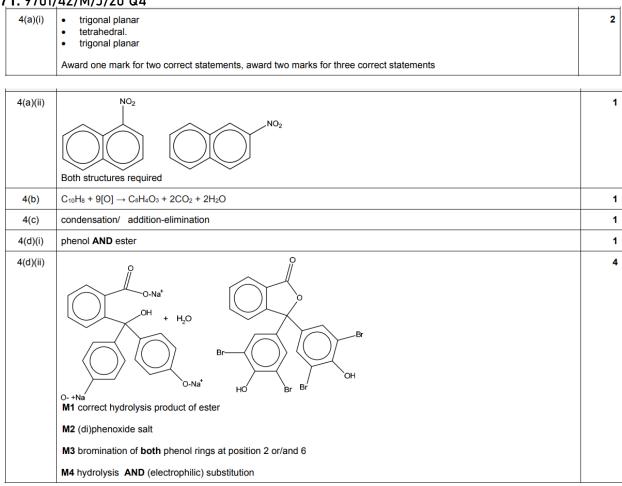
7(a)	Any four from the following points: • (regular) hexagon OR planar • all C-C bonds same length [1] • all bond angles 120° • all carbon atoms sp ² hybridised [1] • C-H bonds are s-sp ² overlap [1] • C-C bonds have sp ² -sp ² overlap [1] • C-C bonds have p-p overlap • π used correctly and σ used correctly once each	4
7(b)(i)	curly arrow from within hexagon towards NO ₂ + AND curly arrow from C-H bond to within hexagon [1] H intermediate [1]	2
7(b)(ii)	electrophilic substitution [1]	1
7(b)(iii)	conc nitric acid and sulfuric acid [1] $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^- $ OR [1] $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + SO_4^{2-}$ $2HNO_3 + H_2SO_4 \rightarrow 2NO_2^+ + H_2O + SO_4^{2-}$ $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_2O + HSO_4^-$	2
7(b)(iv)	tin and HC <i>l</i> [1] conc and heat / boil / reflux [1]	2
7(c)(i)	$C_6H_5NH_2 + 3Br_2 \rightarrow C_6H_2Br_3NH_2 + 3HBr$ [1]	1
7(c)(ii)	2,4,6-tribromophenylamine [1]	1
7(c)(iii)	decolourisation of bromine AND white precipitate [1]	1


7(d)	phenylamine < ammonia < ethylamine [1]	
	 Ip on nitrogen of phenylamine delocalised into ring alkyl group of ethylamine electron donating / has positive inductive effect [1] correct statement about availability of lone pair to accept proton once [1] 	
7(e)(i)	either a dioic acid or a dioyl chloride [1]	1
7(e)(ii)	 trailing bonds two of each monomer residue, consistent with ei [1] repeat unit identified amide link showing C=O [1] 	2

68.9701/41/M/J/20 Q4

4(a)	11 phenylmethanamine / U > phenylamine / T > benzamide / S [1]	
	 any two from: alkyl group is electron donating so lone pair more able to accept a proton lone pair on N overlaps with delocalised system so less able to accept a proton presence of electron-withdrawing oxygen / carbonyl group means lone pair is not available to accept a proton OR amides are neutral 	
4(b)(i)	reaction 1 LiAlH ₄	2
	reaction 2 heat NH_3 under pressure/ heat NH_3 in a sealed tube	
4(b)(ii)	reaction 1 reduction	2
	reaction 2 nucleophilic substitution	

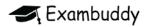

69. 9701/41/M/J/20 Q5

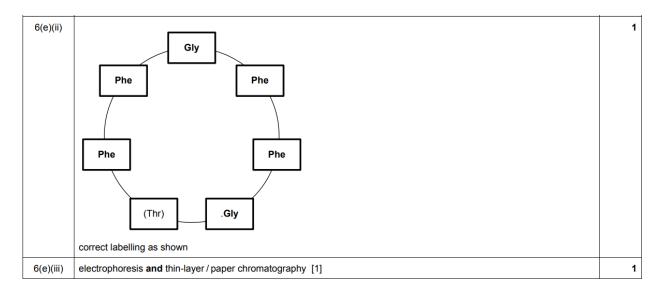


70. 9701/41/M/J/20 Q6

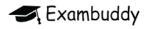

6(a)	M1 2-chloropropanoic acid > 3-chloropropanoic acid > propanoic acid [1]	3	
	M2 CH ₃ CHC/CO ₂ H / C/CH ₂ CH ₂ CO ₂ H (are more acidic) as they contain an electronegative Cl atom so weaken O-H bond / stabilise carboxylate anion [1]		
	M3 CH ₃ CHC <i>I</i> CO ₂ H (is more acidic than C <i>I</i> CH ₂ CH ₂ CO ₂ H) as the C <i>I</i> atom is closer to CO ₂ H so weaken O-H bond more / stabilise carboxylate anion more [1]		

6(-)			
6(c)		reagents and conditions	observed change
	test 1	M1 Tollen's reagent, warm OR	silver mirror
		Fehling's solution, warm	(brick)-red ppt.
	test 2	M2 aqueous alkaline iodine OR	yellow ppt.
		2,4-DNPH	orange ppt.
	test 3	M3 acidified MnO4 ⁻ , warm	decolourises (and bubbles)
	Two corr	ect observations = 1 mark	
	Three co	prrect observations = 2 marks	


71.9701/42/M/J/20 Q4


72. 9701/42/M/J/20 Q5c

5(b)(ii)	(higher as) benzophenone is more non-polar/more soluble in octan-1-ol ora	1
5(c)(i)		2
	Award one mark for each correct structure	
5(c)(ii)	step 1 PC l_5 OR SOC l_2 OR PC l_3 + heat	1
5(d)(i)		1
5(d)(ii)	M1 step 3 electrophilic substitution	2
	M2 step 3 benzene and A <i>l</i> C <i>l</i> ₃ (and heat)	
5(d)(iii)	step 4 oxidation	1


73. 9701/42/M/J/20 Q6

6(a)(i)	condensation	1
6(a)(ii)		1
6(a)(iii)	id-id forces/London forces AND permanent dipole-dipole forces	1
6(b)	M1 (secondary structure by) hydrogen bonding between CO and NH groups	2
	M2 (tertiary structure by) interactions between R groups and one example of a named intermolecular force	
6(c)	M1 (hydrogen bonding between) base pairs M2 A with T and C with G	2
6(d)	hydrolysis and by action of light/UV	1
6(e)(i)	H ₂ N CO ₂ H H ₂ N CO ₂ H Award one mark for each correct structure	2

74. 9701/42/F/M/20 Q1c (iii)

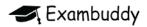
1(c)(iii)	reactant	observation with (CO ₂ H) ₂	2
	warm H⁺/MnO₄⁻	decolourised OR effervescence / bubbling / fizzing	
	2,4-DNPH	none / no reaction	
	warm Tollens' reagent	none / no reaction	

75. 9701/42/F/M/20 Q4

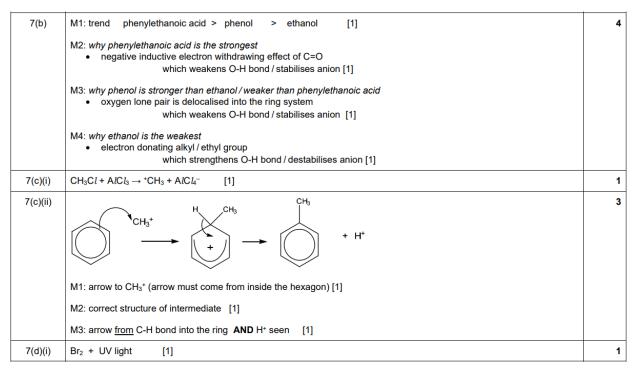
4(a)(i)	A = ester B = (2°) amide	2
4(a)(ii)	2	1
4(b)	M1 phenylalanine M2 protonated amine M3 (ethanol) CH ₃ CH ₂ OH	3
4(c)(i)	catalyst / halogen carrier	1
4(c)(ii)	M1 —OH directs to 2,4 AND both 2 positions occupied / only position 4 is available M2 —COOH directs to 3 position AND only position 3 is available / 5 is occupied	2

76. 9701/42/F/M/20 Q5

5(a)	M1 COOH is more acidic than phenol AND because the O-H bond in acid is weaker OR carboxylate ion is more stable	2
	M2 O-H bond weakened / loses proton more easily AND by negative inductive effect of C=O / due to electronegative C=O OR carboxylate ion / anion is more stable AND due to delocalisation of minus charge by C=O / 2O	
r		

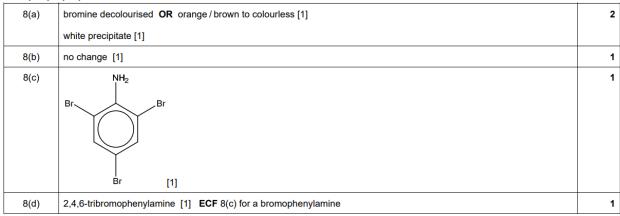

5(c)(i)	$HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^- \text{ OR } HNO_3 + H_2SO_4 \rightarrow H_2O + NO_2^+ + HSO_4^-$		
5(c)(ii)	соон соон	2	
	$\begin{array}{c} & & & \\$		

5(c)(iii)	electrophilic substitution	1
5(c)(iv)	M1 Sn and HC <i>l</i> M2 heat and concentrated (dependent on metal (Fe / Sn) and acid seen for M1)	2
5(c)(v)	$\begin{tabular}{ c c c c c } \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	2
5(c)(vi)	warm / T \geqslant 30 °C AND H_2O / named aqueous acid	1



77.9701/42/F/M/20 Q6

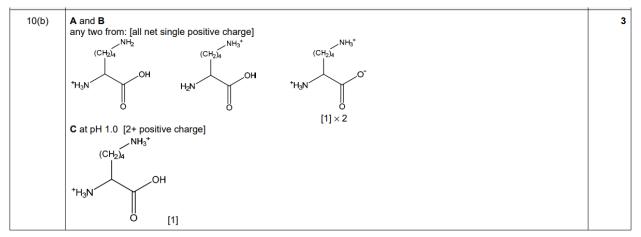
6(a)(i)	$\begin{array}{l} (CH_3)_2 CHCHNH_2 COOH + 4[H] \rightarrow (CH_3)_2 CHCHNH_2 CH_2 OH + H_2 O\\ \textbf{OR} \ C_5 H_{11} NO_2 + 4[H] \rightarrow C_5 H_{13} NO + H_2 O \end{array}$	1
6(a)(ii)	lithium aluminium hydride / LiA <i>I</i> H ₄ (in dry ether)	1
6(a)(iii)	nucleophilic substitution	1
6(b)	$H_2N \longrightarrow H \longrightarrow H_1 \longrightarrow H_2 OOH$	2
	M1 one peptide link fully displayed (but not contradicted by the other peptide link)	
	M2 rest of structure correct	
6(c)(i)	M1 optical isomerism	2
	$\begin{array}{c} M2 \\ COOH \\ R \\ NH_2 \\ H_2N \end{array}$	
6(c)(ii)	$ \begin{array}{c} O & H \\ C & -C - C - C H(CH_3)_2 \\ O & - I \\ O & - I \\ \Theta \\ \Theta \end{array} $	1

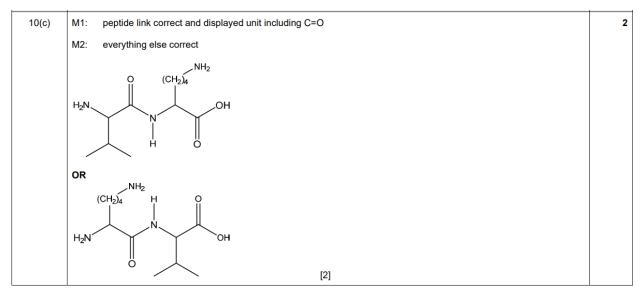


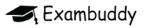
78. 9701/41/0/N/21 Q7b

7(d)(ii)		1
7(d)(iii)	CHECK Q is correct step 2 - KCN in ethanol + heat [1] step 3 - HC/(aq) + heat/reflux/boil [1]	2
7(d)(iv)	CHBr ₂ OR CBr ₃ [1] ALLOW any viable organic by-product from this radical substitution reaction, e.g. C ₆ H ₅ CH ₂ CH ₂ C ₆ H ₅	1

79. 9701/41/0/N/21 Q8

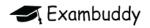



80. 9701/41/0/N/21 Q9

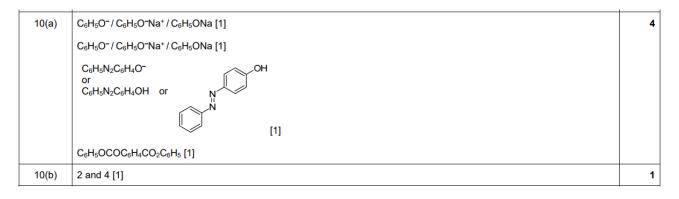

9(a)	$PCl_5 \text{ OR } PCl_3 \text{ OR } SOCl_2 $ [1]	1
9(b)(i)	amide [1]	1
9(b)(ii)	$HCl/hydrogen chloride OR C_2H_5NH_3Cl/ethylammonium chloride [1]$	1
9(c)(i)	LiA1H4 [1]	1
9(c)(ii)	reduction [1]	1

81. 9701/41/0/N/21 Q10

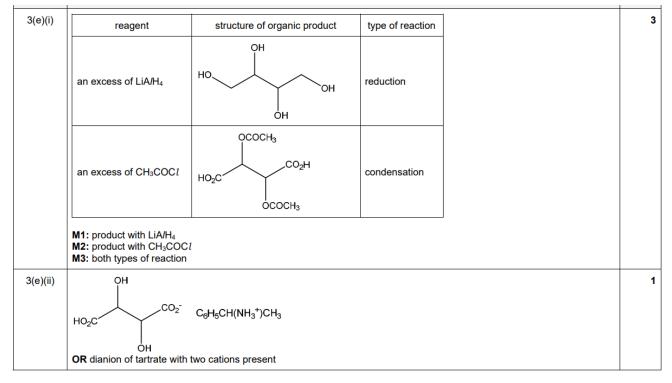
82. 9701/42/0/N/21 Q7a,c

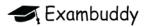

L		
7(c)(i)	benzoic acid [1]	1
7(c)(ii)	COOH directs 3 position [1]	1
7(c)(iii)	electrophilic substitution [1]	1
7(c)(iv)	M1 curly arrow from within hexagon towards CH ₃ C⁺=O [1]	3
	M2 correct intermediate [1]	
	M3 curly arrow from C-H bond into hexagon and correct product Q [1]	
7(c)(v)	MnO_4^- / $KMnO_4$ / manganateVII / permanganate aq / H^+ / acidified / OH^- then acid / alkaline then acid heat / boil / reflux / T>50°	1
	OR	
	alkaline iodine followed by acidification [1]	

83. 9701/42/0/N/21 Q8a


8(a)	M1 one diagram correct [1]	2
	M2 both diagrams correct 3D and different [1]	
8(d)(i)	use of buffer [1]	1
8(d)(ii)	 correct circuit including DC power supply paper or gel labelled [1] sample towards the middle of the paper / gel OR 	2
	on cathode side [1]	
8(d)(iii)	anode / positive / +	1
	AND	
	anode / positive / + [1]	
8(d)(iv)	M1 ala is –1 and glu is –2 [1]	2
	M2 ala is lighter / has lower Mr [1]	

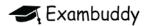
84. 9701/42/0/N/21 Q9

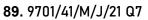

9(a)	organic starting material	reagent and conditions		6
	1-butyl halide, e.g. CH ₃ CH ₂ CH ₂ CH ₂ Br	NH ₃ under pressure or heated in sealed tube	[1] + [1]	
	butanenitrile CH ₃ CH ₂ CH ₂ CN	H ₂ and Ni or Pt / LiA/H ₄ / Na + ethanol	[1] + [1]	
	butanamide CH ₃ CH ₂ CH ₂ CONH ₂	LiA/H₄ / Na + ethanol	[1] + [1]	
9(b)	M1 butylamine > ammonia	ı > phenylamine [1]		4
	M2 basicity related to abili	ty of Ip to accept proton / H ⁻	[1]	
	M3 butylamine is stronger	because of positive inductive	ve effect of alkyl group / C₄H ₉ [1]	
	M4 phenylamine is weake	r because Ip on N is deloca	alised into ring [1]	

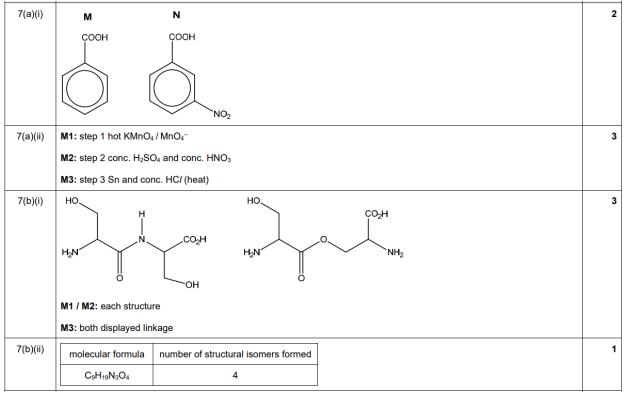


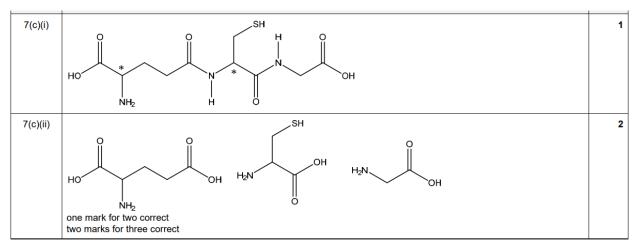
85. 9701/42/0/N/21 Q10

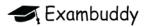
86. 9701/41/M/J/21 Q3e

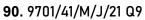


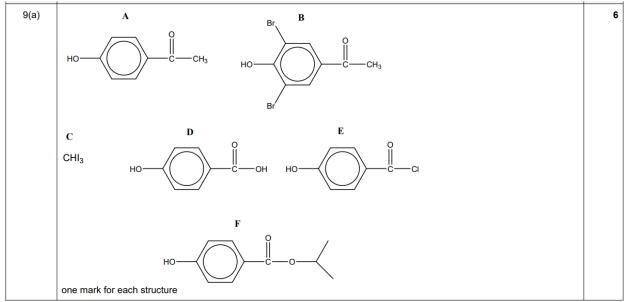

87. 9701/41/M/J/21 Q6

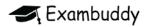

6(a)	M1: etha	anoic acid > butanoic acid > wa	ter > ethanol		4
			ron donating or an electron witho ing of O–H bond OR stability of		
	Two out	of the three alternatives M3, M	4 and M5:		
	M3: etha	anol: positive inductive effect / e	lectron donating effect of ethyl /	alkyl / R group	
	M4: buta	anoic acid: positive inductive eff	fect / electron donating effect of p	propyl / alkyl / R group	
	M5: (eith over CO		negative inductive effect of either	C=O or carbonyl OR negative charge delocalised	
6(b)(i)		reagents and conditions	observed change]	3
	test 1	Tollen's reagent, warm OR Fehling's solution, warm	silver mirror (brick) red ppt / solid		
	test 2	acidified MnO₄⁻, warm	decolourises OR bubbles	-	
	M1 / M2	: reagents and conditions $\times 2$			
	M3: obs	ervations both correct			

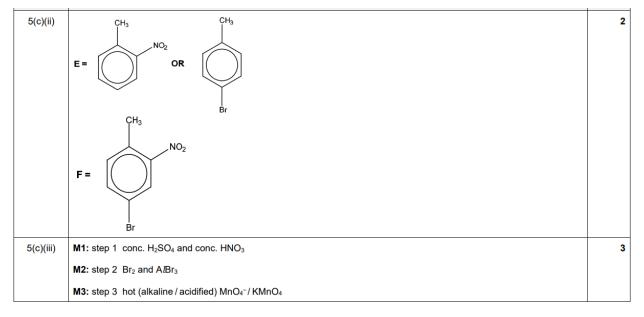

88. 9701/41/M/J/21 Q6c,d


6(c)(i)	$\mathbf{G} = HOCH_2CH_2CH_2CH_2OH$ $\mathbf{H} = NCCH_2CH_2CH_2CH_2CN$	2
6(c)(ii)	M1: step 1 NaOH(aq) + heat	4
	M2: step 2 acidified KMnO ₄ + heat / acidified $K_2Cr_2O_7$ + heat	
	M3: step 3 CN ⁻ / KCN / NaCN + heat	
	M4: step 4 LiAlH₄ ALLOW Na in ethanol or H₂ + Ni / Pd / Pt	
6(d)	$ \begin{array}{c} O & O \\ \ & \ \\C \\$	2
	M1: correct displayed amide linkage	
	M2: the rest of the repeat unit correct including trailing bonds	

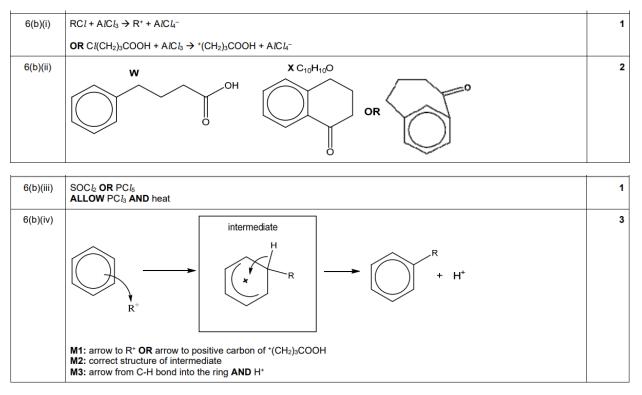




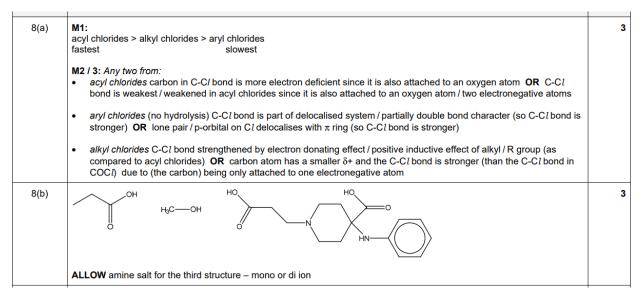


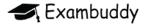




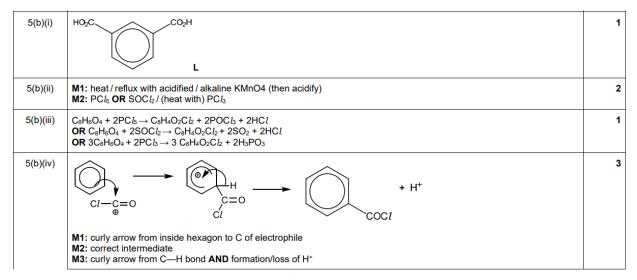

91. 9701/42/M/J/21 Q5

5(a)	M1: ethylamine phenylamine 4-nitrophenylamine most basic least basic	4
	 M2 / 3 / 4: explanation two correct for one mark, three correct for two marks, four correct for three marks (basicity linked to) lone pair / p orbital on N AND being able accept / donate to / coordinate to a proton / H* 	
	 ethyl / alkyl group is electron donating / has a positive inductive effect (so lone pair on N is more able to accept a proton) 	
	 (phenylamines are less basic than ethylamine as) p orbital / lone pair on N is delocalised (into the ring so less able to accept a proton) 	
	 (4-nitrophenylamine is less basic than phenylamine as) nitro / NO₂ group is electron withdrawing (so lone pair on N is less able to accept a proton) 	
5(b)(i)	O_2N N N $C\bar{l}$ OR O_2N N N $C\bar{l}$	1
5(b)(ii)	M1: step 1: HNO ₂ , ≤ 10°C OR NaNO ₂ , HC <i>l</i> (aq), ≤ 10°C	2
	M2: step 2: NaOH / alkaline AND 1-naphthol / α-naphthol / structure below	
5(c)(i)	4-bromo-2-nitrobenzoic acid OR 4-bromo-2-nitro(-1-)benzenecarboxylic acid	1

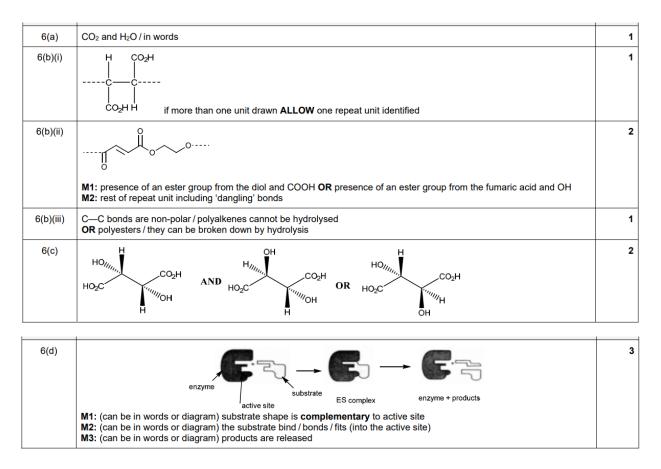


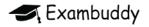


92. 9701/42/M/J/21 Q6b



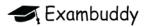
93. 9701/42/M/J/21 Q8

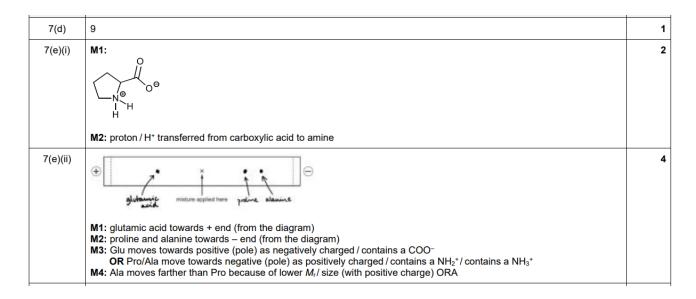




94.

95. 9701/42/F/M/21 Q6

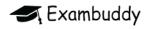


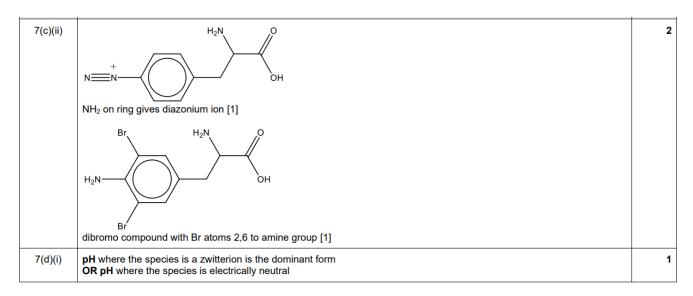


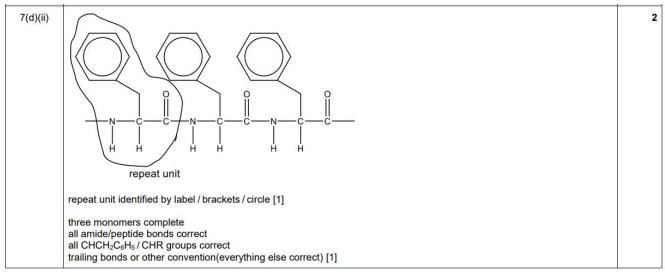
96. 9701/42/F/M/21 Q7

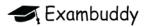
7(a)(i)	$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	2
7(a)(ii)	condensation ALLOW substitution / addition-elimination	1
7(a)(iii)	there is no H attached to the N	1
7(b)(i)	$(C_4H_7NHCO_2H +) NaOH \rightarrow C_4H_7NHCO_2Na + H_2O$	1
7(b)(ii)	$ \begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \\ Skeletal only \end{array} $	1

7(b)(iii)	LiA <i>I</i> H ₄	1
7(c)(i)	$CH_2(CO_2C_2H_5)_2$: • (di)ester CH_2 =CHCN: • alkene • nitrile/cyanide All three correct for two marks	2
7(c)(ii)	addition	1
7(c)(iii)	$H_2/Ni \text{ OR } H_2/Pt \text{ OR } H_2/Pd$	1
7(c)(iv)	condensation / (nucleophilic) substitution / elimination	1
7(c)(v)	ethanol / C ₂ H ₅ OH / CH ₃ CH ₂ OH	1
7(c)(vi)	$ \begin{array}{c} \stackrel{\circ}{\longrightarrow} \\ \stackrel{\circ}{\longrightarrow} $	3
7(c)(vii)	Asterisk on *CHCO ₂ H	1



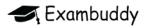



97.9701/41/0/N/22 Q7

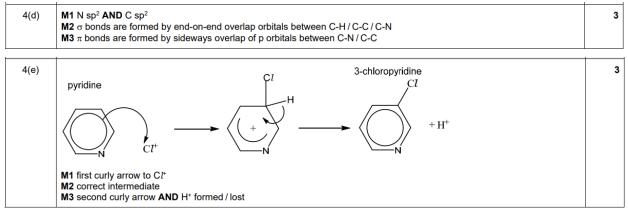

7(a)(i)		1
7 <mark>(a)(</mark> ii)	plane of polarised light will be rotated (in both isomers) [1]	2
	by same angle / equal amounts in opposite directions [1]	
7(b)(i)	CH ₃ COC <i>l</i> AND HC <i>l</i>	1

7(b)(ii)	ОН НЛ ОН	3
	methanol [1] ester bond \rightarrow primary alcohol	
	OR amide $\rightarrow 2^{\circ}$ amine AND benzene ring unchanged [1] rest of the structure of second compound is correct [1]	
7(b)(iii)	Q < phenylamine < P [1]	3
	any three from: ability of N to accept a proton OR donate its lone pair to a proton	
	phenylamine lone pair of N delocalised into ring OR p-orbital on N overlaps with π cloud of ring (and decreases electron density on N)	
	compound P (2° amine) alkyl group has a positive inductive effect (and increases electron density on N)	
	compound Q (amide) Ione pair of N (in amide) delocalised by C=O OR overlap of Ione pair of N with C=O (and decreases electron density on N)	
7(c)(i)	conc. HNO ₃ and H ₂ SO ₄ (25 °C < T \leq 60 °C) [1]	2
	Sn and conc. HC <i>l</i> and reflux (followed by NaOH(aq)) [1]	

98.9701/41/0/N/22 Q8

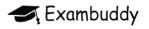

8(a)	120° AND sp ²	1
8(b)(i)	$C_2H_5Cl + AlCl_3 \rightarrow CH_3CH_2^+ + AlCl_4^-$	1
8(b)(ii)	$ \begin{array}{c} & & & \\ & $	3
8(c)(i)	(aqueous / alkaline) AgNO ₃ / silver nitrate	1
8(c)(ii)	$ \begin{array}{l} C_2H_5Cl+H_2O\rightarrow C_2H_5OH+HCl \\ /\ C_2H_5Cl+NaOH\rightarrow C_2H_5OH+NaCl \\ \textbf{AND } Ag^*+Cl^-\rightarrow AgCl \\ \textbf{AND } NO \text{ equation shown for } C_6H_5Cl \end{array} $	1
8(c)(iii)	Ione pair / p-orbital from C <i>I</i> overlaps with benzene ring AND stronger / partial double C-C <i>l</i> bond OR difficult to break C-C <i>l</i> bond	1

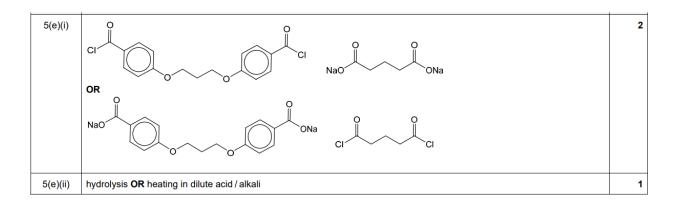
99. 9701/42/0/N/22 Q7

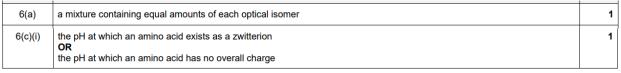

7(a)	C > A > B [1] chlorine and C=O are electronegative / withdraw charge and this causes greatest weakening of O–H bond or greatest stabilisation of the anion [1] 2nd oxygen / C=O is electronegative / withdraws charge and this weakens O–H bond or stabilises anion [1]	3
7(b)(i)	chloromethane aluminium chloride	1
7(b)(ii)	$CH_3Cl + AlCl_3 \rightarrow AlCl_4 - + CH_3^+$	1
7(b)(iii)	curly arrow from within benzene to CH_3^+ [1] positively charged intermediate [1] curly arrow from C–H bond into ring, $C_6H_5CH_3$, H ⁺ [1]	3
7(b)(iv)	hot alkaline KMnO ₄ [1] $C_6H_5CH_3 + 3[O] \rightarrow C_6H_5CO_2H + H_2O$ OR $C_6H_5CH_3 + 3[O] + OH^- \rightarrow C_6H_5CO_2^- + 2H_2O$ [1]	2
7(b)(v)	2 or 4-nitromethylbenzene and 3-nitrobenzoic acid	1
7(c)(i)	HNO ₂ , T between 0° and 10°C	1
7(c)(ii)	warm / T>10°C and H ₂ O	1
7(c)(iii)	CH ₃ C ₆ H ₄ –N=N–C ₆ H ₃ (CH ₃)OH [1] T between 0° and 10°C and NaOH(aq) [1]	2

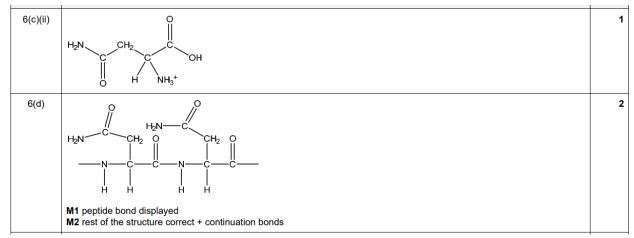
100. 9701/42/0/N/22 Q9

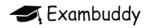
9(a)	pH 7 *H ₃ N(CH ₂)₄CHNH ₂ COOH pH 9.47 *H ₃ N(CH ₂)₄CHNH ₂ COO ⁻ [1] pH 12 H ₂ N(CH ₂)₄CHNH ₂ COO ⁻ [1]	2
9(b)	D ethanoyl chloride [1] E correct phenyl ester [1] F correct amide [1]	3
9(c)	Br substitutes at both 2 and 6 positions [1] both phenol and COOH groups deprotonated [1] NO_2 substitutes at one or both of 2 and 6 positions [1]	3

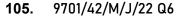


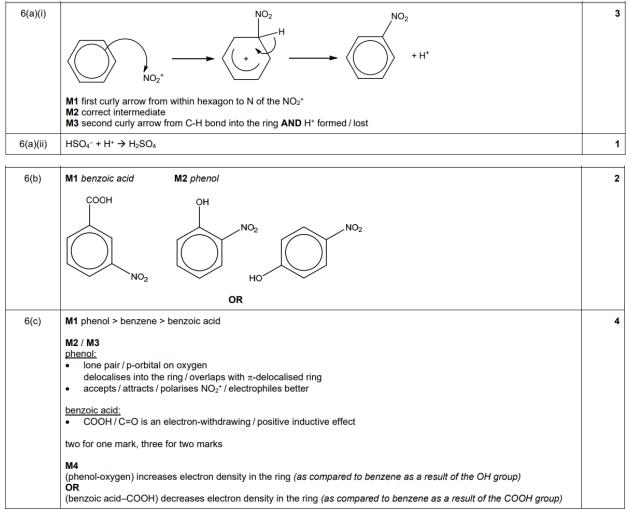

101. 9701/41/M/J/22 Q4d

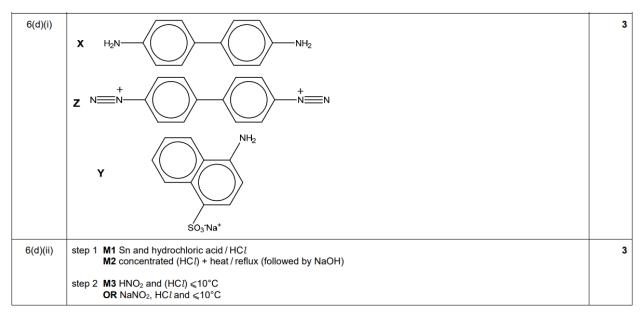

102. 9701/41/M/J/22 Q5


5(a)	 M1 benzoic acid > phenol > phenylmethanol M2 / M3 Any two of: in benzoic acid negative inductive effect 		-H bond is weakened		
	 In benclic acid negative inductive energy OR due to delocalisation of minus charge by in phenol lone pair on oxygen is delocali in phenyl methanol positive inductive eff 	C=O / 2O carbo sed into the ring	oxylate ion is stabilise a AND O-H bond is w	ed veakened	
5(b)		benzoic acid	phenylmethanol	phenol	
	Na(s)	~	~	~	
	NaOH(aq)	~	×	~	
	Na ₂ CO ₃ (aq)	~	×	×	
	Three correct for one mark, six correct for tw	o marks, nine c	orrect for three marks	5	
5(c)(i)	POCI ₃ and HCl AND SO ₂ and HCl				
5(c)(ii)	all the by-products / SO2 and HCl are gaseou	ıs OR no liquid l	by-products formed		
	$C_{6}H_{5} \xrightarrow{\delta^{+}/2} C \xrightarrow{O} C_{1}$ $H_{2}O$	H F	$C_{6}H_{5}$		
	On the left-hand side: Ione pair on O correct arrow from O to C (of C=O) dipole on C=O correct arrow on C=O M1 / M2 Two correct for one mark, four correct	ect for two marks	S		
	On the right-hand side: M3 correct intermediate M4 arrow from lone pair on O ⁻ to C-O bond A	AND arrow from	C-C1 to C1		

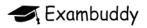

103. 9701/41/M/J/22 Q6



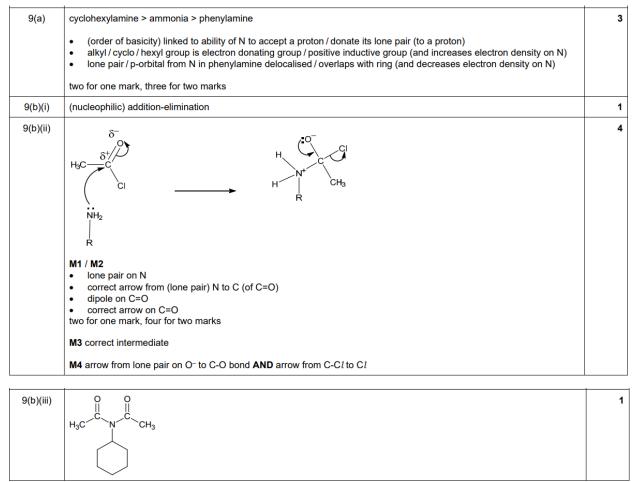


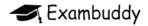

104. 9701/41/M/J/22 Q7

7(a)(i)	phenylamine AND amine AND ester	1
7(a)(ii)	sp carbons = 0, sp ² carbons = 7, sp ³ carbons = 6	1
7(b)	6	1
7(c)	lone pair on the N can accept a proton	1
7(d)(i)	CH ₃ NO ₂	1
7(d)(ii)	step 1 M1 concentrated HNO ₃ and H ₂ SO ₄ step 2 M2 hot (alkaline) KMnO ₄ (followed by addition of H*)	2
7(e)	step 4 M1 HOCH ₂ CH ₂ N(CH ₂ CH ₃) ₂ step 5 M2 Sn AND HCl M3 concentrated (HCl) AND heat / reflux	3

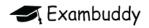

106. 9701/42/M/J/22 Q7c

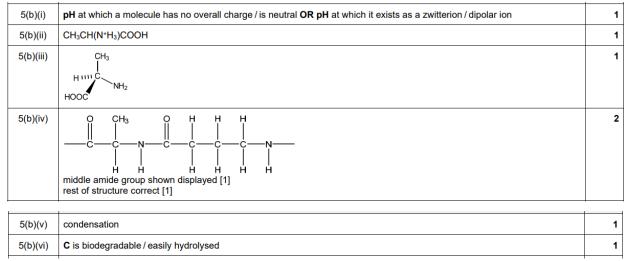
7(c)(i)	six/6	1	
7(c)(ii)	$C_{21}H_{34}O_5$	1	
7(c)(iii)	a substance that is able to rotate the plane of polarised light in opposite directions	1	


107. 9701/42/M/J/22 Q8


8(a)	M1 chloroethanoic acid > ethanoic acid > phenol > ethanol	4
	M2 correct link of acidity once can be implied from M1 weakens O—H / carboxylate anion stabilised	
	 M3 / M4 explanation linked to structure (C<i>l</i>CH₂CO₂H > ethanoic acid) due to electronegative / electron withdrawing / negative inductive effect of C<i>l</i> (ethanoic acid > phenol) due to electronegative / electron withdrawing / negative inductive effect of COOH / C=O (phenol > ethanol) due to lone pair of oxygen overlapping / delocalised into the ring (ethanol weakest) alkyl group is electron donating / positive inductive effect two for one mark, four for two marks 	

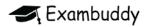
8(b)	oxidation	2
	• (solution) decolourises OR purple → colourless / pale pink OR bubbles	
	• HOOCCOOH + [O] \rightarrow 2CO ₂ + H ₂ O OR 5HOOCCOOH + 2MnO ₄ ⁻ + 6H ⁺ \rightarrow 10CO ₂ + 8H ₂ O + 2Mn ²⁺	
	two for one mark, three for two marks	
8(c)		2
8(d)	$\begin{array}{c c} & & & & \\ H_2C & & OH \\ \hline H_2C & OH \\ \hline H_2C & O \\ \hline H_2C & O$	2
	M1 peptide linkage shown displayed with saturated C each side	
	M2 rest of structure correct AND continuation bonds	
8(e)	addition polymers do not hydrolyse OR condensation polymers can hydrolyse	1


108. 9701/42/M/J/22 Q9



9701	/42/F/M/22 Q4	
4(a)(i)	In F: (phenyl)amine AND carboxylic acid In J: phenol AND ester Any two for one mark All four for two marks	2
4(a)(ii)	0 (zero) in F AND 2 (two) in J	1
4(b)(i)	step 1 CH ₃ C <i>l</i> AND A <i>l</i> C <i>l</i> ₃ [1]	3
	step 2 $\mathbf{D} = {}^{O_2N}$ [1] step 4 (hot) Sn AND concentrated AND HC <i>l</i> [1]	
4(b)(ii)	$ \begin{array}{c} \text{Step 4} & (\text{hot}) \text{ Sit AND Concentrated AND HC} i [1] \\ \hline \\ \text{NO}_2 & [1] \end{array} \end{array} $	2
	COOH group is electron-withdrawing group and 3,5-/meta- directing [1]	
4(c)(i)	C ₉ H ₁₈ O	1
4(c)(ii)	hydrolysis [1] acid–base / neutralisation [1]	2
4(d)(i)	$C_6H_5OH + Na \rightarrow C_6H_5O^{(-)}Na^{(*)} + \frac{1}{2}H_2$	1
4(d)(ii)	Br OH Br Br	1
4(d)(iii)	 (CO)O—H bond weaker / more easy to donate H⁺ in K owing to negative inductive / electron withdrawing effect of C=O / COOH group carboxylate anion stabilised / phenoxide anion is less stabilised All three for two marks 	2
4(e)	p-orbital on oxygen overlaps with ring / π system OR lone pair of e ⁻ on oxygen is delocalised into the ring [1] electron density in ring increases [1] attracts/polarises electrophile better [1]	3

109. 9701/42/F/M/22 Q4


110. 9701/42/F/M/22 Q5b

111. 9701/42/F/M/22 Q6

6(a)	$HOCH_2COOH + 2SOCl_2 \rightarrow ClCH_2COCl + 2SO_2 + 2HCl$	1
6(b)	to remove / neutralise excess H*/ acid produced OR to react with any acidic by-products / HCl/SO ₂ OR to react with any unreacted W	1

6(c)	$\begin{array}{c} \overbrace{Cl} & \overbrace{Cl} & \overbrace{Cl} & \overbrace{Cl} & \overbrace{Cl} & \overbrace{L_{2}N-Ar} \\ Ar-NH_{2} & \\ \end{array}$ M1: curly arrow from lone pair on :NH ₂ to carbonyl C ^(\delta+) =O M2: correct dipole on ⁵⁺ C=O ⁵⁻ AND curly arrow from bond C=O to O(⁵⁻) M3: correct structure of the intermediate (inc. charges) M4: curly arrow from lone pair on :O ⁻ to C=O AND curly arrow from C—C <i>l</i> to C <i>l</i>	4
6(d)	N/nitrogen can donate its lone pair / LP / pair of electrons	1

