1. 9701/42/0/N/16 Q8b

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	, ,					
8(b)(i)	OH OH OH						
		= 1 mark = 2 marks	,				2
8(b)(ii)	2-methyl	butanoic acid				1	1
8(c)(i)	о он					1	1
8(c)(ii)	δ/ppm	environment of the carbon atom	hybridisation the carbon at	of om			
	27	alkyl/CH₃	sp ³				
	41	next to carboxyl/(CH ₃) ₃ <u>C</u>	sp ³				
	179	carboxyl/CO₂H	sp ²				2
8(d)(i)	δ/ppm	type of proton	number of protons	splitting			
	0.9	alkane/CH/CH ₃	6	doublet			
	1.6	alkane/CH	1	[multiple	tj		
	2.4	alkyl next to C=O/CH ₍₂₎ CO/CH	2	doublet			
	11.5	OH/CO₂H/carboxylic acid	1	singlet			4
8(d)(ii)		ОН				1	1
8(e)	CDC <i>l</i> ₃	OR D ₂ O, DMSO, CD ₂ C <i>l</i> ₂ , CC <i>l</i> ₄				1	1

2. 9701/41/M/J/16 Q2c

		
(c) (i)	CH_3 at δ 15 CH_2O at δ 65	[1] [1]
(ii)	Only one peak, so only one type/environment of C atom	[1]
(d) (i)	M is HO ₂ C-CO ₂ H N is CH ₃ OCO-CO ₂ H O is CH ₃ OCO-COOCH ₃	[3]
(ii)	L is C C C	[1]

3. 9701/42/M/J/16 Q6b

(b) (i)	δ 26 is C H3-CO	2
	Phenyl ethanoate is B methyl benzoate is A M1 = any two correct δ linked to phenylethanoate/methyl benzoate	
	M2 = the rest correct	
(ii)	heat with H ₃ O ⁺ (to hydrolyse the ester)	3
	then add Br ₂ (aq)/bromine water	
	decolourises/gives white ppt. (with phenol from B)	

4. 9701/41/0/N/17 Q6d

6(d)(i)	7 peaks					1	
6(d)(ii)		CDC l_3 will produce no signal in the spectrum or CHC l_3 would produce a signal/would be detected					
6(d)(iii)	δ/ppm	group responsible for the peak	number of H atoms responsible for the peak	splitting pattern		4	
	1.2	CH ₍₃₎	3	triplet			
	3.5	CH ₍₂₎ O	2	quartet			
	5.5	NH ₂	2	singlet (broad)			
	7.1–7.4	H attached to aromatic/benzene ring	4	multiplet			
6(d)(iv)	neighbouring/adjacent ca or there is an adjacent C	arbon atom has two protons / H (attacl H₂(O) group	hed to it)			1	
6(d)(v)	peak at 5.5/NH ₂ peak will and NH ₂ /protons exchange/s					1	

6(e)(i)	NaNO ₂ + HC <i>l</i> or HNO ₂	1
6(e)(ii)	$\begin{array}{c c} CO_2C_2H_5 & CO_2C_2H_5 \\ \hline \\ N \\ R & N \\ S \\ \hline \\ OH \\ \end{array}$	
	structure of diazonium salt R	1
	structure of azo dye S	1

5. 9701/42/0/N/17 Q3c

3(c)(ii)	5 or 6 peaks	1	
	OH/NH protons exchange with deuterium or –OH/–NH + D ₂ O \rightarrow –OD/–ND + DHO	1	

6. 9701/41/M/J/17 Q6d

6(d)(i)		$\delta \text{ value}$	number of H atoms	group	splitting	result with D ₂ O	l
		1.4	3	CH ₃ / methyl	doublet	peak remains	
		2.7	1	OH / hydroxyl / alcohol	singlet	peak disappears	
		4.0	1	СН	quartet	peak remains	
	the three group	s are in t	their correct places wr	t the δ values			1
	no. of H atoms	for each	peak agrees with grou	up column			1
	splitting patterr	s double	t, singlet and quartet a	are assigned to correct group	S		1
	neak identified	ac OH di	sannears with D.O. no	o other peak disappears			1

7. 9701/42/M/J/17 Q2e

2(e)(i)	4 peaks		1
2(e)(ii)	CH ₃ CH ₃ CH ₃	CH ₃ CH ₂ Cl	1+1
	number of peaks = 2	number of peaks = 3	1

8. 9701/42/F/M/17 Q7e

7(e)(i)	seven	1
7(e)(ii)	x , any aryl carbon at $\delta = 130$ H_2N OH y at $\delta = 170$	1

9. 9701/41/0/N/18 Q5a(i)

5(a)(i) [1] fo	each corre	ect answer
	numb	er of peaks
F		3
G		6

10. 9701/41/M/J/18 Q7e

7(e)(i)	propanoic acid	1
7(e)(ii)	propan-1-ol would have peak at 0.5–6.0 because of OH group	1
	propanal would have peak at 9.3–10.5 because of CHO / aldehyde	1

11. 9701/42/M/J/18 Q8d

8(d)(i)	4	1
8(d)(ii)	range δ 25–5	1
	range δ 190–220	1
	one peak in first range and three peaks in second range	1
8(d)(iii)	1	1
8(d)(iv)	singlet	1
	neighbouring / adjacent (carbon) atom has no protons / H	1

12. 9701/41/0/N/19 Q4d

4(d)(iv)	6	1
4(d)(v)	 25–50 110–160 190–220 Award 1 mark for two points, award 2 marks for three points	2

. 9701/41/0/N/19 Q9c

9(c)(i)	2 [1]	1
9(c)(ii)	CH ₂ next to ester and terminal CH ₃ are circled [1]	1
9(c)(iii)	 one less peak the lost peak is NH₂ / aryl amine protons exchange with D OR protons are labile OR valid equation ✓ for two marks [2] 	2

. 9701/42/0/N/19 Q8g

8(g)(i)	M1 : δ12.7 is COOH	2
	M2: δ3.3 is CH and δ1.1 is CH ₃	
8(g)(ii)	quadruplet / quartet 3 H / protons on neighbouring / adjacent carbon / carbons / C	1
8(g)(iii)	2 (butanedioic acid) and 3 (methylpropanedioic acid)	1

. 9701/41/M/J/19 Q8b

8(b)	TMS: Reference CDCI ₃ : Solvent	1
8(c)(i)	M1: CH ₃ CO	3
	M2: CH ₃ CH ₂ O	
	M3: (CO)CH ₂ O	
8(c)(ii)	CH ₃ COCH ₂ OCH ₂ CH ₃	1
8(d)	HCO ₂ C(CH ₃) ₃	1
8(e)(i)	this is a (carbon) atom which has four different atoms or groups attached to it	1
8(e)(ii)	CH ₃ CH ₂ CH(CH ₃)COOH	1

. 9701/42/M/J/19 Q8

8(a)	4-chloro-3,5-dimethylphenol OR 3,5-dimethyl-4-chlorophenol [1]	1
	ALLOW 2,6-dimethyl-4-hydroxychlorobenzene and 2-chloro-5-hydroxy-1,3-dimethylbenzene	
8(b)(i)	carbon-13 NMR = 5 peaks [1]	2
	proton NMR = 3 peaks [1]	
8(b)(ii)	OH proton had disappeared due to proton exchange with D / D ₂ O [1] ALLOW OH + D ₂ O \rightarrow OD + HOD	1

17. 9701/42/F/M/19 Q6c

6(c)(i)	six	1
6(c)(ii)	M1 peak at δ 0.9 is due to 12 H M2 peak at 2.2 is due to 2 H M3/M4 peaks at 1.2, 1.4 and 1.7 are all singlets	4
6(c)(iii)	$\begin{array}{c c} CH_3 & NH_2 & \underline{\delta 2.2} \\ H_2C & CH_2 & \underline{\delta 1.7} \\ H_3C & CH_2 & CH_3 & \underline{\delta 0.9} \end{array}$	2
6(c)(iv)	NH / NH ₂ protons AND exchange with D ₂ O / D	1
	$OR -NH_2 + D_2O \rightarrow -ND_2 + H_2O$	

18. 9701/41/0/N/20 Q8b(iv)

8(b)(iv)	5 / five [1]	1	

19. 9701/41/0/N/20 Q9

9(a)	(because $CDCl_3$ / it) does not give a peak [1] OR because $CHCl_3$ does give a peak	1
9(b)	as a standard / reference for (chemical shift measurements) [1]	1
9(c)	ester [1]	1
9(d)(i)	 (δ = 1.4) triplet (δ = 1.4) two H on neighbouring C atom (δ = 4.3) quartet / quadruplet (δ = 4.3) three H on neighbouring C atom mark as • ✓ • ✓ [2] 	2
9(d)(ii)	aryl group / arene / phenyl [1]	1
9(d)(iii)	COOCH ₂ CH ₃ OR C ₆ H ₅ CO ₂ C ₂ H ₅ [1]	1

20. 9701/42/0/N/20 Q6d

6(d)(ii)	Clockwise from left: absorption at σ = 1.9 to 2.1 absorption at σ = 6.5 to 7 [1] absorption at σ = 3 to 3.5 absorption at σ = 1 to 1.5 [1]	2
6(d)(iii)	the peak at 6.6 to 6.8 / due to NH would disappear [1] H exchanges with D [1]	2

6(f)(i)	LiA <i>l</i> H ₄ [1]	1	
6(f)(ii)	2 [1]	1	

21. 9701/41/M/J/20 Q6c

22. 9701/41/M/J/20 Q6d

6(d)	chemical s	hift (δ) environment of the carbon atom	hybridisat the carbor		
	27	CH₃ circled	sp ³		
	163	C OOH circled	sp ²		
	192	C=O(COOH) circled	sp ²		
	Award one n	nark for each correct column	'		
6(e)	chemical shift (δ)	group responsible for the peak	splitting pattern	number of ¹ H atoms responsible for the pea	
	1.3	alkane / CH / CH₃	triplet	3	
	2.2	CH₃CO or alkyl / CH next to C=O	singlet	3	
	4.0	CH₂O or alkyl / CH next to electronegative atom / C=O	quartet / quadruplet	2	
	Award one n	nark for every three correct re	sponses.		
6(f)	CH AND CH	H ₃ circled			
		is do not exchange with D_2O and NH protons exchange with	D ₂ O		

23. 9701/42/M/J/20 Q5e

5(e)(i)	5 peaks	
5(e)(ii)	environment of carbon atom	chemical shift range (δ)
	carbonyl / RCOR	190–220
	arene / benzene	110–160
	Award one mark for each correct	ct for each row

24. 9701/42/F/M/20 Q5d

5(d)(i)	5	1
5(d)(ii)	M1 only one peak M2 singlet at δ 6.0–9.0 ppm	2
	OR	
	M1 singlet(s) only M2 only one peak at $δ$ 6.0–9.0 ppm	

25. 9701/41/0/N/21 Q7a

|--|--|--|

26. 9701/41/0/N/21 Q9e

Ì	9(e)(i)	а	[1]	1
ŀ			1.1	•
	9(e)(iii)	d	[1]	1
ĺ	9(e)(iii)	b, c, f	[1]	1
	9(e)(iv)	f	[1]	1

27. 9701/42/0/N/21 Q8b

8(b)	alanine because glutamic acid would have more than two / three peaks / absorb ^{ns} / proton environments [1]	3
	reason why alanine has a doublet given as one neighbouring proton [1] glutamic acid would have (two) triplet (s) OR a multiplet [1]	
	reason why alanine has a quartet / quadruplet given as three neighbouring protons [1]	

28. 9701/41/M/J/21 Q6b

6(b)(ii)	compound	number of peaks in proton NMR	number of peaks in carbon-13 NMR
	HCO₂H	2	1
	HO ₂ CCO ₂ H	1	1
	HO ₂ CCH ₂ CH ₂ CO ₂ H	2	2
	one mark for three, fou two marks for six corre		
6(b)(iii)	OH peak disappears A	ND proton / H exchang	ges with deuterium

29. 9701/42/M/J/21 Q6

30. 9701/42/M/J/21 Q8c

31. 9701/41/0/N/22 Q9b

	<u> </u>	
9(b)	5 5 5 4 4	2
9(c)	4 [1] singlet, (two) triplet(s), multiplet (any order) [1]	2
9(d)(i)	$\mathbf{D} = \text{CH}_3\text{CH}_2\text{CO}_2\text{CH}_2\text{CH}_3$ [1] $\mathbf{E} = (\text{CH}_3)_2\text{CHCO}_2\text{CH}_3$	2
9(d)(ii)	O-CH ₂ labelled F AND three protons on neighbouring carbon / adjacent CH ₃	1
9(d)(iii)	both CH₃ in isopropyl group labelled G AND alkane / alkyl (protons)	1

32. 9701/42/0/N/22 Q8

8(a)	C* marked on CH of T and nowhere else	1
8(b)(i)	$ R - C_6H_5CH_2COCH_2CH_3 [1] $ 3.7 is $C_6H_5CH_2COCH_2CH_3$ 2.5 is $C_6H_5CH_2COCH_2CH_3$ 1.0 is $C_6H_5CH_2COCH_2CH_3$ [1]	2
8(b)(ii)	singlet and no H on neighbouring C	1
8(c)(i)	P and T	1
8(c)(ii)	P	1
8(d)	CDCI ₃ or CCI ₄	1
8(e)	no difference and no protons that exchange with D	1
8(f)	6 5 [1] 4 3 [1]	2

33. 9701/41/M/J/22 Q6b

For more topical past papers and revision notes visit exambuddy.org

34. 9701/42/M/J/22 Q7

7(a) TMS reference OR standard OR to define of D ₂ O solvent OR identification of O-H/N-H	
--	--

7(b)(i)	ketone	number of peaks observed in proton NMR spectrum	number of peaks observed in carbon-13 NMR spectrum		
	pentan-2-one	4	5		
	pentan-3-one	2	3		
	3-methylbutanone	3	4		
	three for one mark, six for two marks				
7(b)(ii)	M1 3-methylbutanon	e e AND pentan-2-one			