1. 9701/41/O/N/16 Q4c,d,e,f | 4(c) | (emf/potential/E) c
"hydrogen half-cell" | of an electrode OR a half-cell compared to/connected to (S)HE which can be called a | 1 | | |-----------|--|---|---|---| | | at concentration of | 1 mol dm ⁻³ and pressure of 1 atm (or in Pa) OR 298 K | 1 | 2 | | 4(d)(i) | half-cell | electrode | | | | | Co ²⁺ /Co | Co/cobalt | | | | | Fe ³⁺ /Fe ²⁺ | Pt/carbon/graphite | | | | | | | 1 | 1 | | 4(d)(ii) | Co+2Fe ³⁺ → Co ²⁺ + | 2Fe ²⁺ | 1 | 1 | | 4(d)(iii) | $E^{\circ}_{\text{cell}} = 0.77 - (-0.28)$ | (x) = (+ or -)1.05 (V) | 1 | 1 | | 4(e)(i) | $E_{\text{electrode}} = -0.28 + (0$ | .059/2)log[0.05]= -0.32/-0.318 (V) | 1 | 1 | | 4(e)(ii) | more positive | | 1 | 1 | | 4(f) | 4Fe ³⁺ + V + H ₂ O → V | 'O ²⁺ +4Fe ²⁺ +2H ⁺ | | | | | VO ²⁺ correct equation | | 1 | | # **2.** 9701/41/M/J/16 Q4 | 4 | (a) (i) | SCP is the EMF/potential of a cell composed of two electrodes (OR half cells) under standard conditions (OR at 289 K OR 1 mol dm ⁻³) | [1] | |---|---------|--|------------| | | (ii) | voltmeter and salt bridge | [1] | | | (iii) | A is Ag B is Ag*(aq) or AgNO ₃ (aq) C is Pt D is Fe ²⁺ (aq) and Fe ³⁺ (aq) (combination of A and B can be reversed with combination of C and D) | [3] | | | (b) (i) | $Ag^+ + Fe^{2+} \longrightarrow Ag + Fe^{3+}$ | [1] | | | (ii) | $E = E^{\circ} + 0.059\log [Ag^{+}] = 0.80 - 0.03 = 0.77 \text{ V}$
so $E_{\text{cell}} = 0.77 - 0.77 = 0.0 \text{ V}$ | [1]
[1] | # **3.** 9701/42/M/J/16 Q2c | (c) (i) | H ₂ (g) Note: The state of | 4 | |---------|---|---| | (ii) | $E_{\text{cell}}^{\text{e}} = 0.34 \text{ (V)}$ and $(Cu^{2+})/Cu$ is the positive electrode | 1 | | d (i) | $K_a = 1.23 \times 10^{-5}$
$[H^{+}] = \sqrt{(K_a.c)} = \sqrt{(1.23 \times 10^{-5} \times 0.1)} = 1.11 \times 10^{-3} \text{ mol dm}^{-3}$
$pH = 3.0 \text{ (2.96) ecf from } [H^{+}]$ | 2 | # **4.** 9701/42/F/M/16 Q5 | 5 (a) (i) | any metal with an E° value more negative than -0.41V , e.g. Fe, Mn, Zn, Mg, Cr, A l R: Li/Na/K/Ca/Ba | 1 | |-----------|--|--------| | (ii) | M1 : value of E_{cell} correctly calculated (with correct sign) for metal named in (i) M2 : E_{cell}° is positive and so reaction is feasible | 1
1 | | (b) | M1:
$(Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightleftharpoons 2Cr^{3^+} + 7H_2O)$ $E^9 = +1.33 \text{ V}$
$(H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O)$ $E^9 = +1.77 \text{ V}$
$E^9_{cell} = 0.44 \text{ (V)}$ | 1 | | | M2 : E°_{cell} (0.44 V) is positive (so the reaction is feasible)/ E° (Cr ₂ O ₇ ²⁻ /Cr ³⁺) is less positive than E° (H ₂ O ₂ /H ₂ O) | 1 | | (c) | M1:
$Cr_2O_7^{2-}$: ox.no Cr = +6 because -2 = 2 × ox.no(Cr) + (7 × -2)
CrO_4^{2-} : ox.no Cr = +6 because -2 = ox.no(Cr) + (4 × -2)
M2: no change in oxidation number, so reaction is not redox | 1 | | (d) | M1 : no. moles Cr deposited = $0.0312/52 = 6.0 \times 10^{-4}$ moles M2 : deduction that 6 moles of e ⁻ needed per mole of Cr/reaction is $\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 12\text{e}^- \rightarrow 2\text{Cr} + 7\text{H}_2\text{O}$ M3 : no. moles of e ⁻ = $6 \times 6.0 \times 10^{-4} = (0.125 \times t)/96500$ so $t = (6 \times 6.0 \times 10^{-4} \times 96500)/(0.125 \times 60) = 46.3 \text{min}/0.772 \text{h}/2780 \text{s}$ | 1 1 | #### **5.** 9701/41/O/N/17 Q3 | 3(a) | the potential difference between two half-cells/two electrodes (in a cell) | 1 | |----------|---|---| | 3(a) | ` ` ` ` ` | | | | under standard conditions of 1 atm., 298 K, (all) solutions being 1 mol dm ⁻³ | 1 | | 3(b)(i) | 8 marking points, any 2 points for each mark H ₂ / hydrogen correct delivery system for H ₂ Pb ²⁺ (aq) Pb electrode Pt electrode Pt electrode H ⁺ (aq) solution salt bridge voltmeter/V labelled | 4 | | 3(b)(ii) | more negative | 1 | | | shifts Pb^{2+} (+ $2e^-$) \Rightarrow Pb equilibrium/reaction to the left | 1 | | 3(c)(i) | Q = $0.4 \times 80 \times 60$ = 1920 C and use of 96500/193000
Moles of Pb = $1920/193000 = 9.95 \times 10^{-3}$
Mass of Pb = $207.2 \times 9.95 \times 10^{-3} = $ 2.1 g | 2 | | | OR Q = $0.4 \times 80 \times 60$ = 1920 C and use of $1.6 \times 10^{-19}/1.2 \times 10^{22}$ atoms Pb = 6×10^{21} ; moles of Pb = $6 \times 10^{21}/6 \times 10^{23}$ = 0.01 Mass of Pb = 207.2×0.01 = 2.1 g | | | 3(c)(ii) | $PbO_2(s) + SO_4^{2-}(aq) + 4H^+ + 2e^- \rightarrow PbSO_4(s) + 2H_2O$ | 1 | | 3(d) | reagents/PbO ₂ /H ₂ SO ₄ and used up/concentration decreases | 1 | | | as fuel/hydrogen is being continuously supplied/fuel has not run out | 1 | # **6.** 9701/42/O/N/17 Q4 | 4(a)(i) | $E^{\circ}_{\text{cell}} = 1.00 - (-0.26) = (+)1.26 \text{ V}$ | 1 | |-----------|--|---| | 4(a)(ii) | $VO_2^+ + V^{2+} + 2H^+ \rightarrow VO^{2+} + V^{3+} + H_2O$ | 1 | | 4(a)(iii) | solutions labelled correctly in one half-cells [1] two graphite or platinum electrodes [1] salt bridge and voltmeter [1] | 4 | | 4(b) | V²*(aq) and Sn⁴*(aq): yes and E°_{cell} = +0.15 - (-0.26) = +0.41 V [1] 2V²* + Sn⁴* → 2V³* + Sn²* [1] VO²*(aq) and Fe³*(aq) no reaction [1] | 3 | # **7.** 9701/42/F/M/17 Q3 | 3(a)(i) | | 3 | |----------|--|---| | 3(a)(ii) | positive electrode is (Pt) on RHS AND electrons flow clockwise | 1 | | 3(b) | cell potential is 0.77 – 0.34 =(+) 0.43 (V) | 1 | | 3(c)(i) | electrode potential would become more negative as equilibrium shifts to left/explanation in terms of the Nernst equation | 1 | | 3(c)(ii) | $E = -0.41 + (0.059/1)\log[Cr^{3+}]/[Cr^{2+}]$
= -0.41 + 0.059 log 4.0 | 1 | | | = -0.37 (V) | 1 | # **8.** 9701/41/O/N/18 Q8e | 8(e)(i) | $2CH_3OH + 3O_2 \rightleftharpoons 2CO_2 + 4H_2O$ OR $2CH_3OH + 3O_2 \rightleftharpoons 2CO_2 + 4H^+ + 4OH^-$ | 1 | | |----------|--|---|--| | 8(e)(ii) | $E^{\circ}_{cell} = 1.23 - 0.02 = 1.21 \text{ V}$ | 1 | | # **9.** 9701/42/O/N/18 Q5c | 5(c)(i) | $5NO_2^- + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$
OR $5HNO_2 + 2MnO_4^- + H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$ | 2 | |----------|--|---| | | all species correct [1] balanced [1] | | | 5(c)(ii) | $E^{\circ}_{cell} = 1.52 - 0.94 = 0.58 \text{ (V)}$ | 1 | ### **11.** 9701/41/M/J/18 Q3 | 3(a) | | | | |] | 3 | |-----------|--|--|-----------------------------|---------------------------|---|---| | 0(4) | | 1.110 () | anode | cathode | | | | | | AgNO₃ (aq) | oxygen / O₂ | silver / Ag | | | | | | saturated NaCl (aq) | chlorine / C l ₂ | hydrogen / H ₂ | | | | | | CuSO ₄ (aq) | oxygen / O ₂ | copper/Cu | | | | 3(b)(i) | $2I^- \rightarrow I_2 + 2e^-$ | | | | | 1 | | | Ca ²⁺ + 2e ⁻ → Ca | | | | | 1 | | 3(b)(ii) | Oxidation number | uced and I / iodine oxidiser
er of calcium decreases fro
er of iodine increases from | m 2 to 0 | | | 2 | | 3(b)(iii) | metal / grey / silvery purple AND vapour amount of melt decreany 2 points for 1 mark | / gas / fumes | | | | 1 | | 3(c) | 2 × 60 × 60 × 0.8 = 5760
AND
5760 / 96500 = 0.060 (0.000) | | | | | 1 | | | 1.11 / 55.8 = 0.020 (0.01 | 199) mol of Fe | | | | 1 | | | $0.06/0.02 = 3 : Fe^{3+} c$ | or +3 or 3 | | | | 1 | # **12.** 9701/42/M/J/18 Q3 | | + | | | |----------|--|--|--| | 3(a) | anode | cathode | | | | NaOH (aq) oxygen / O ₂ | hydrogen / H ₂ | | | | dilute CuCl ₂ oxygen / O ₂ (aq) | copper/Cu | | | | $\begin{array}{c c} \operatorname{conc} \operatorname{MgC} l_2 & \operatorname{\textbf{chlorine}} \operatorname{\textbf{/}} \operatorname{\textbf{C}} \boldsymbol{l_2} \\ \operatorname{(aq)} & \end{array}$ | hydrogen / H ₂ | | | 3(b)(i) | $2Br^- \rightarrow Br_2 + 2e^- \text{ or } 2Br^ 2e^- \rightarrow$ | r ₂ | | | | $Zn^{2+} + 2e^- \rightarrow Zn$ | | | | | Zinc / Zn ²⁺ reduced and Br ⁻ / brom | e oxidised | | | 3(b)(ii) | liquid / molten metal or orange-brown / reddish brown or amount of melt / electrolyte decr | | | | 3(c) | 50 × 60 × 1.2 or 3600 C (calcution 3600 / 96 500 or 0.0373 F (calcution 3600 / 96 500 or 0.01865 / 0.01865 / 0.01865 × 24 000 = 448–449 (2 points = 1 mark 3 points = 2 marks 4 points = 3 marks | lation of number of Faradays)
mol H ₂ (use of stoichiometry) | | # **13.** 9701/42/M/J/18 Q5d | 5(d)(i) | F_2 or $S_2O_8^{2-}$ | 1 | |-----------|--|---| | 5(d)(ii) | +1.05 or +0.19 | 1 | | 5(d)(iii) | $2\text{Co}^{2^{+}} + \text{F}_{2} \rightarrow 2\text{Co}^{3^{+}} + 2\text{F}^{-}$
or $2\text{Co}^{2^{+}} + \text{S}_{2}\text{O}_{8}^{2^{-}} \rightarrow 2\text{Co}^{3^{+}} + 2\text{SO}_{4}^{2^{-}}$ | 1 | | | | | # **14.** 9701/42/F/M/18 Q2 | 2(a) | the E° for X_2/X^- becomes less positive / decrease down the group so the halogens are less reactive (as oxidants) down the group | 2 | |-----------|---|---| | 2(b)(i) | $Cl_2 + H_2O \longrightarrow HCl + HClO$ | 1 | | 2(b)(ii) | $Cl_2/Cl^- = +1.36 \text{ V}$ and $ClO^-/(Cl^- + OH^-) = +0.89 \text{ V}$
so $E^{\circ}_{cell} = 1.36 - 0.89 = (+) 0.47 \text{ V}$ | 2 | | 2(b)(iii) | box three ticked Le Chatelier argument, more OH ⁻ /increase reactant concentration so equilibrium shifts right <i>or</i> an argument based on the half cell with OH ⁻ | 2 | | 2(c)(i) | $Br^- + 3ClO^- \longrightarrow BrO_3^- + 3Cl^-$ | 1 | | 2(c)(ii) | $E_{\text{cell}}^{\circ} = 0.89 - 0.58 = +0.31 \text{V}$ | 1 | | 2(c)(iii) | $4HBrO_3 \longrightarrow 2Br_2 + 5O_2 + 2H_2O$ | 1 | ### **15.** 9701/42/F/M/18 Q6 | 6(a)(i) | X is an ammeter | | |----------|---|---| | 6(a)(ii) |)(ii) Y is AgNO₃ or AgF or AgCℓO₄ | | | 6(b) | $\begin{array}{l} n(Ag) = 0.500 / 107.9 \ = \ 4.6 (34) \times 10^{-3} \\ n(C) = 0.200 \times 40 \times 60 \ = \ 480 \ C \\ n(e^-) = 480 / 1.60 \times 10^{-19} \ = \ 3 (.00) \times 10^{21} \\ n(e^-) / n(Ag) = 3.00 \times 10^{21} / 4.634 \times 10^{-3} \ = \ 6.474 \times 10^{23} \ (\textbf{6.5} \times \textbf{10}^{23}) \end{array}$ | 3 | # **16.** 9701/41/O/N/19 Q1 | 1(a) | Platinum / Pt Aluminium / Al BOTH | 1 | |-----------|--|---| | 1(b)(i) | M1: use of or quoting a valid Nernst equation $E = E^{\circ} + 0.0590 / z \log [ox] / [red] \textbf{OR} E = 0.15 + (0.0590 / 2) \log 2$ | 2 | | | M2: E = (+) 0.16 (0.159) V minimum 2 sig. fig. | | | | correct answer scores 2 marks | | | 1(b)(ii) | $E_{\text{ceil}} = 0.16 - (-1.66) = +1.82 \text{ V}$ minimum 3 sig. fig. | 1 | | 1(b)(iii) | $2Al + 3Sn^{4+} \rightarrow 2Al^{2+} + 3Sn^{2+}$ | 2 | | | M1: species | | | | M2: balancing | | | 1(c) | M1: number of C (= $300000 \times 60 \times 60 \times 24$) = 2.59×10^{10} (C) | 4 | | | M2: number of $F(=2.592 \times 10^{10}/9.65 \times 10^4) = 2.69 \times 10^5$ (moles of electrons) | | | | M3: moles of A l (= 2.69 × 10 ⁵ /3) = 8.95 × 10 ⁴ | | | | M4: mass of A l (= 8.95 × 10 ⁴ × 27) = 2420 kg | | | | correct answer scores 4 marks | | | 1(d) | M1: $(Cr^{2+} + 2e^- \rightleftharpoons Cr) E^0 = -0.91$ and $(2H^+ + 2e^- \rightleftharpoons H_2) E^0 = 0.00$ seen | 2 | | | M2: hydrogen formed instead / hydrogen (ions) easier to reduce / hydrogen has more positive E° | | # **17.** 9701/42/O/N/19 Q1 | 1(a) | Platinum and platinum | 1 | |-----------|---|---| | 1(b)(i) | M1: Nernst quoted correctly $E = E^{\circ} + 0.0590 / \text{zlog [ox]} / \text{[red] or } E = 1.49 + 0.0590 \log 5$ | 2 | | | M2: (+)1.53 V minimum 2 sig. fig. | | | | Correct answer scores 2 marks | | | 1(b)(ii) | +/-0.46 minimum 2 sig. fig. | 1 | | 1(b)(iii) | $M1: Mn^{3+} + 2Br \rightarrow Mn^{2+} + Br_2$ | 2 | | | M2 : $2Mn^{3+} + 2Br \rightarrow Mn^{2+} + Br_2$ | | | 1(c) | M1: 16200C
M2: 1.0125×10^{23} electrons (use of 1.60×10^{-19})
M3: 0.0802 moles of copper (use of 5.09 and 63.5)
M4: 0.1603 moles electrons
M5: L = 6.32×10^{23} (correct answer [5] | 5 | | | other approaches acceptable including:
M1: 16200C M2: 1.0125×10^{23} electrons (use of 1.60×10^{-19}) M3: 5.0625×10^{22} copper atoms M4: 0.0802 moles of copper (use of 5.09 and 63.5) M5: L = 6.32×10^{23} (correct answer [5]) | | | 1(d) | M1: Mg ²⁺ + 2e ⁻ \Rightarrow Mg E^{o} = -2.38 and 2H ⁺ + 2e ⁻ \Rightarrow H ₂ E^{o} = 0.00 | 2 | | | M2: hydrogen produced instead / hydrogen easier to reduce / hydrogen preferentially reduced / hydrogen has more positive <i>E</i> ° | | # **18.** 9701/41/M/J/19 Q3c | 3(c)(i) | M1 | Li \rightarrow Li ⁺ + e ⁻ and I $_2$ + 2e ⁻ \rightarrow 2I ⁻ | | |-----------|---------------------|--|---| | | M2 | $2Li + I_2 \rightarrow 2Li^+ + 2I^-$ | | | 3(c)(ii) | E ^e cell | = 0.54 -(-3.04) = + 3.58 V [1] | 1 | | 3(c)(iii) | M1 | amount of Li = $0.10 / 6.9 = 1.45 \times 10^{-2} \text{ mol } [1]$ | 3 | | | M2 | Q needed = $96500 \times 1.45 \times 10^{-2}$ = 1399 (1398.55) C [1] ecf | | | | МЗ | t = 1399 / (2.5×10^{-5}) = 5.6 × 10 ⁷ s [1] ecf 2sf min | | # **19.** 9701/42/M/J/19 Q1d | 1(d) | | | en a half-cell is connected to a (standard) hydrogen electrode under standard conditions [1] /voltage / EMF between a hydrogen electrode and another half-cell under standard conditions [1] | 1 | |----------|--|-----------------|--|---| | 1(e)(i) | salt bridge
Ag
Pt
1 atm. (pressure) | : | voltmeter / V • Ag* (or soluble silver salt) • H ₂ (and delivery correct) + H* (or named strong acid) • 1 mol dm ⁻³ (and 298 K) • mark as • ✓ • ✓ • ✓ • ✓ [4] | 4 | | 1(e)(ii) | Ag electrode labelle | ed and a | rrow (in the external circuit moving towards this electrode) [1] | 1 | # **20.** 9701/42/F/M/19 Q4c | 4(c)(i) | ^e _{cell} = 0.15 − 0.54 = −0.39 (V) | | |-----------|---|---| | 4(c)(ii) | since E_{cell}° is negative (reaction is not likely to occur) OR since $E_{\text{cell}}^{\circ} < 0$ (reaction is not feasible / not spontaneous) | 1 | | 4(c)(iii) | $E = E^{\circ} + (0.059/1) \log(1.0/1.3 \times 10^{-6})$
= +0.15 + 0.059 × 5.89
= +0.50/0.497 V | 2 | | 4(c)(iv) | E_{cell} is very negative OR calculation ($E_{\text{cell}} = 0.15 - 1.36 =) - 1.21 \text{ V}$ | 1 | # **21.** 9701/41/O/N/20 Q3 | 3(a) | (anode =) oxygen / O ₂ AND (cathode =) hydrogen/H ₂ BOTH [1] | 1 | |----------|---|---| | 3(b) | M1 : Q = $1.5 \times 60 \times 60 \times 4.5 = 24300$ (C) [1]
M2 : no. of F / moles of e ⁻ = $24300 / 96500 = 0.25(1813)$ [1] ecf
M3 : volume of $Cl_2 = 24 \times 0.252 / 2 = 3.02$ dm ³ [1] ecf min 2sf
M4 : mass of Na = $0.252 \times 23 = 5.79$ (5.7917) g Na [1] ecf min 2sf | 4 | | 3(c)(i) | MnO ₄ -, H*, Mn ²⁺ in same beaker AND H* in other beaker both electrodes Pt(s) (ALLOW graphite) one solute clearly identified as 1M / 1 mol dm ⁻³ 298 K OR 1 atm voltmeter / potentiometer labelled (or circled V) salt bridge labelled (must touch the solution) a good delivery system for H ₂ (g) H ₂ (g) mark as two correct points = 1 mark [4] | 4 | | 3(c)(ii) | $\begin{split} F_2 \mathbf{OR} S_2 O_8^{2-} \mathbf{OR} H_2 O_2 \mathbf{OR} HOC \mathit{l} \mathbf{OR} Co^{3+} \mathbf{OR} Pb^{4+} [1] \\ 2Mn^{2+} + 8H_2 O + 5F_2 &\rightarrow 2MnO_4^- + 16H^+ + 10F^-[1] \\ \mathbf{OR} 2Mn^{2+} + 5S_2 O_8^{2-} + 8H_2 O &\rightarrow 2MnO_4^- + 16H^+ + 10SO_4^{2-} \\ \mathbf{OR} Mn^{2+} + 4H_2 O + 5Co^{3+} &\rightarrow MnO_4^- + 8H^+ + 5Co^{2+} \\ \mathbf{OR} 2Mn^{2+} + 8H_2 O + 5Pb^{4+} &\rightarrow 2MnO_4^- + 16H^+ + 5Pb^{2+} \\ \mathbf{OR} 2Mn^{2+} + 5H_2 O_2 &\rightarrow 2MnO_4^- + 6H^+ + 2H_2 O \\ \mathbf{OR} 2Mn^{2+} + 10HOC\mathit{l} &\rightarrow 2MnO_4^- + 6H^+ + 5C\mathit{l}_2 + 2H_2 O \end{split}$ | 2 | ### **22.** 9701/42/O/N/20 Q4 | 4(a) | chlorine AND hydrogen [1] | 1 | |-----------|--|---| | 4(b) | $15 \times 60 \times 0.75 = 675 \text{ C [1]}$
$675/96500 = 7.0 \times 10^{-3} \text{ moles e}^-[1]$
$7.0 \times 10^{-3} \times 0.25 \text{ gives } 1.75 \times 10^{-3} \text{ moles } O_2$
$1.75 \times 10^{-3} \times 24000 = 42 \text{ (41.969) cm}^3 O_2 [1]$ | 3 | | | OR 45 00 0 0 75 0 74 0 74 | | | | $15 \times 60 \times 0.75 = 675 \text{ C [1]}$
$675 / 1.60 \times 10^{-19} = 4.22 \times 10^{21} \text{ e}^- = 7.01 \times 10^{-3} \text{ moles e}^- [1]$
gives $1.75 \times 10^{-3} \text{ moles } O_2 = 42 (42.047) \text{ cm}^3 [1]$ | | | 4(c)(i) | 1.36 1.07 0.54 [1] | 1 | | 4(c)(ii) | all of them [1] (all E° values) greater than 0.15 / E° cell greater than zero [1] e.g. $Sn^{2+} + X_2 \rightarrow Sn^{4+} + 2X$ [1] | 3 | | 4(c)(iii) | MnO ₂ [1] | 1 | | 4(d)(i) | 1.24 V [1] | 1 | | 4(d)(ii) | platinum, platinum [1] | 1 | | 4(d)(iii) | increase [Fe ²⁺] or decrease [Fe ³⁺] increase [S ₂ O ₈ ²⁻] or decrease [SO ₄ ²⁻] [1] | 1 | # **23.** 9701/41/M/J/20 Q3 | 3(a)(i) | 6CO ₂ + 24H ⁺ + 24e ⁻ → | C ₆ H ₁₂ O ₆ + 6H ₂ O | 2 | |-----------|--|--|---| | | ALLOW 6CO ₂ + 12H ⁺ + | $12e^{-} \rightarrow C_6H_{12}O_6 + 3O_2$ for both marks | | | | ALLOW one mark for an i | unbalanced equation showing the correct species of either equation | | | 3(a)(ii) | salt bridge (indicated) | voltmeter / V labelled | 4 | | | O ₂ good delivery system | H ₂ good delivery system | | | | Pt electrode | H ⁺ /HCI/H ₂ SO ₄ solution labelled (at least once) | | | | 1 atm | 1 mol dm ⁻³ quoted | | | | Every two correct respons | es = 1 mark | | | 3(a)(iii) | E ^e cell = (+) 1.23 V ANI | positive electrode = O ₂ half-cell identified | 1 | # **24.** 9701/41/M/J/20 Q7a | 7(a)(iv) | M1 E=E ^o + 0.059log[Ag ⁺] | 2 | | |----------|--|---|--| | | M2 E=0.80 + 0.059log(1.2 x 10 ⁻⁴) = 0.57 V ecf from (a)(ii) min 2sf | | | # **25.** 9701/42/M/J/20 Q2f | 2(f) | It is feasible as the E_{cell} will be positive/+0.12 V | 1 | |------|---|---| # **26.** 9701/42/M/J/20 Q6 | 8(a)(i) | M1 potential difference between two half-cells/two electrodes in a cell | 2 | |-----------|--|---| | | M2 under conditions of 1 atm., 298 K, (all) solutions being 1 mol dm ⁻³ | | | 8(a)(ii) | both platinum | 1 | | 8(a)(iii) | $E_{\text{cell}}^{\text{e}} = 1.82 - 1.36 = (+)0.46 \text{ V}$ | 1 | | 8(a)(iv) | $2Co^{3+} + 2Ct \rightarrow Cl_2 + 2Co^{2+}$ | 1 | | 8(b) | M1 Q= 2.5 x 30 x 60 C = 4500 C AND 96500 OR 579000 seen | 2 | | | moles of CO_2 = 4500/579000 = 7.8 x10 ⁻³ or 7.77 x 10 ⁻³ | | | | M2 volume of $CO_2 = 7.77 \times 10^{-3} \times 24000 = 187 \text{ cm}^3$ | | ### **27.** 9701/42/F/M/20 Q2b | 2(b)(i) | $2Al^{9+} + 3O^{2-} + 3C \rightarrow 2Al + 3CO$ | 1 | |-----------|--|---| | 2(b)(ii) | M1 $Q = It$ = $3.5 \times 10^5 \times 3 \times 60^2 = 3.78 \times 10^9$ C
M2 no. of mol e ⁻ = $3.78 \times 10^9 / 96500 = 3.92 \times 10^4$
M3 mass $Al = 27 \times 3.92 \times 10^4 / 3 = 3.5(3) \times 10^5$ g | 3 | | 2(b)(iii) | $3SiF_4 + 2H_2O \rightarrow 2H_2SiF_6 + SiO_2$ | 1 | # **28.** 9701/42/F/M/20 Q3 | 3(a)(i) | Mark as • ✓ ✓ • voltage of an electrode / half-cell • compared / connected to (S)HE / hydrogen half-cell / electrode • under standard conditions / 1 mol dm ⁻³ , 1 atm, 298 K | 2 | |-----------|---|---| | 3(a)(ii) | Mark as · · · · · · · · · · · · · · · · · · | 4 | | 3(a)(iii) | $Au^{3+} + NO + 2H_2O \rightarrow Au + NO_3^- + 4H^+$ | 1 | | 3(a)(iv) | +1.50 – 0.96 = + 0.54 (V) | 1 | | 3(a)(v) | M1 M2 any two [1] all four [2] adding conc HNO₃ shifts equilibrium 3 to the right E for (half-equation 3) increases / more positive adding conc HCl shift equilibrium 2 to the left E for (half-equation 2) decreases / less positive M3 E(3) becomes greater than E(2) | 3 | # **29.** 9701/41/O/N/21 Q1 | 1(a) | moles of $H_2 = 462/24000 = 0.01925[1]$ | 2 | |------|--|---| | | molecules of H ₂ = $0.019 \times 6.02 \times 10^{23}$
= $1.16 \times 10^{22} (1.1 \times 10^{22} / 1.2 \times 10^{22})$ [1] min 2sf ecf M1 | | | 1(b) | number of electrons = $1.16 \times 10^{22} \times 2$
= 2.32×10^{22} [1] min 2sf ecf 1a | 1 | | 1(c) | Q = $2.32 \times 10^{22} \times 1.6 \times 10^{-19}$
= 3.71×10^3 [1] min 2sf ecf 1b | 1 | | 1(d) | $x = 3.71 \times 10^3 / (14 \times 60)$
= 4.4 (A) [1] min 2sf ecf 1c | 1 | # **30.** 9701/42/O/N/21 Q3 | 3(a) | 0.351/24 = 0.015 (mol) [1] | 2 | |------|--|---| | | $0.015 \times 6.02 \times 10^{23} = 9.0 \times 10^{21} / 8.8 \times 10^{21}$ [1] | | | 3(b) | $1.76 \times 10^{22} / 1.8 \times 10^{22}$ [1] | 1 | | 3(c) | 2817/2816/2820/2800 C [1] | 1 | | 3(d) | 15/15.1/15.05/15.15 minutes [1] | 1 | # **31.** 9701/41/M/J/21 Q3b | 1 | | 1 | |----------|--|---| | 3(b)(i) | M1: emf / potential difference / difference in electrode potential between two half-cells / two electrodes (in a cell) | 2 | | | M2: (all solutions being) 1 mol dm ⁻³ AND either 1 atm OR 298 K | | | 3(b)(ii) | salt bridge, voltmeter, Cu(s), Cu ²⁺ (aq), Pt(s), Fe ²⁺ and Fe ³⁺ (aq) two for one mark, four for two marks, six for three marks | 3 | | | Cu(s) Fe ³⁺ (aq)/Fe ²⁺ (aq) | | | 3(c)(i) | M1: $2I^- + 2Fe^{3+} \rightarrow I_2 + 2Fe^{2+}$
M2: $S_2O_8^{2-} + 2Fe^{2+} \rightarrow 2SO_4^{2-} + 2Fe^{3+}$ | 2 | | 3(c)(ii) | M1: $I_2/I^- + 0.54 \text{ V}$ AND $Fe^{3+}/Fe^{2+} + 0.77 \text{ V}$ AND $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-} + 0.36 \text{ V}$ M2: E^o of I_2/I^- is more positive / greater than E^o of $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ OR $E^o_{cell} = -0.18 \text{ V}$ so no reaction occurs OR E^o of Fe^{3+}/Fe^{2+} is more positive / greater than E^o of I_2/I^- OR $E^o_{cell} = 0.23 \text{ V}$ so reaction occurs [1] | 2 | | 3(d)(i) | $S_2O_8^{2-}$ and tartrate ions are both negatively charged / both reactants same charge AND so repel each other OR have a high E_a | 1 | | 3(d)(ii) | $C_4H_4O_6^{2-} + 2H_2O \Rightarrow 2CO_2 + 2HCO_2^- + 6H^+ + 6e^-$ | 1 | # **32.** 9701/42/M/J/21 Q1e | | E°_{cell} = 1.23 - (-0.41) = (+)1.64 V OR E°_{cell} = 0.68 - (-0.41) = (+)1.09 V value linked to (e)(i) | 1 | | |--|---|---|--| ### **33.** 9701/42/M/J/21 3a,b | 3(a)(i) | M1: voltage of an electrode / a half-cell compared to / connected to (standard) hydrogen electrode / half-cell | 2 | |----------|--|---| | | M2: (at concentration of) 1 mol / dm³ AND (pressure of) 1 atm / 101 kPa (or in Pa) AND 298 K / 25°C | | | 3(a)(ii) | E * redox system | 1 | | | Most B negative | | | | ↑ C | | | | Least negative A | | | 3(b)(i) | E_{cell} = 1.07 – 0.80 = (+)0.27 V
AND direction of electron flow = Ag ⁺ /Ag to Br ₂ /Br | 1 | | 3(b)(ii) | M1: E° _{cell} 3rd box ticked | 2 | | | M2: [Ag*] decreases AND so (Ag*/Ag) equilibrium shifts to the left OR [Ag*] decreases AND E for (Ag*/Ag) becomes less positive/more negative | | # **34.** 9701/42/M/J/21 Q4b | 4(b)(i) | anode: chlorine / Cl_2 cathode: hydrogen / H_2 | 1 | |----------|--|---| | 4(b)(ii) | M1: Q = $0.75 \times 60 \times 60 = 2700$ C AND 96 500 or 193 000 used | 2 | | | M2: [a] moles of Ca = 2700 / 193 000 = 0.0140 [b] mass = 0.0140 × 40.1 = 0.56 g | | ### **35.** 9701/42/F/M/21 Q1b | ı | | | | Ĺ | |---|------|--|---|---| | | 1(b) | M1/2: Any two of: | 3 | | | | . , | Co ³⁺ is reduced Co ²⁺ | | 1 | | | | | | 1 | | | | oxygen gas/O₂ is evolved | | | | | | E of Co ³⁺ greater than E of O ₂ | | 1 | | | | | | | | | | M2: no shange /to [Co/odtoNe) / not faceible OMITE | | | | | | M3: no change (to [Co(edta)]-) / not feasible OWTTE | | ı | | ŀ | | | | l | # **36.** 9701/42/F/M/21 Q2b | 2(b)(ii) | $2O^{2-} \rightarrow O_2 + 4e^-$ | 1 | |-----------|--|---| | 2(b)(iii) | M1: coulombs and correct use of ÷ 96500 M2: correct use of 3 and 8 M3: correct use of 55.8 and answer | 3 | | | M1 : $Q = It = 50 \times 6 \times 60^2$ OR 1.08×10^6 C AND no. of faraday = $1.08 \times 10^6 + 96500$ OR $11.2 / 11.19$ mol e ⁻ | | | | M2: Fe ²⁺ + 2Fe ³⁺ + 8e ⁻ \rightarrow 3Fe
∴ moles of Fe = 3 / 8 × M1 = 4.20 mol Fe ecf | | | | M3 : mass of Fe = 55.8 × M2 = 234.2 g ecf 3sf min | | | 2(c)(i) | Any one of: small size / compact, low mass, high voltage OWTTE | 1 | | 2(c)(ii) | Li from +1 to +1
Fe from +3 to +2 | 1 | | 2(c)(iii) | LiC ₆ + FePO ₄ → LiFePO ₄ + 6C | 1 | # **37.** 9701/42/F/M/21 Q3c | 3(c)(i) | M1: E_{cell} for $IO_3^-/H_2O_2 = -0.68 + 1.19 = +0.51$ (∴ feasible)
M2: E_{cell} for $H_2O_2/I_2 = +1.77 - 1.19 = +0.58$ (∴ feasible)
M3: $5H_2O_2 + I_2 \rightarrow 4H_2O + 2IO_3^- + 2H^+$ | 3 | |----------|--|---| | 3(c)(ii) | $2H_2O_2 \rightarrow 2H_2O + O_2$ | 1 | # **38.** 9701/41/O/N/22 Q3 | 3(a)(i) | (lon (Sn ²⁺ /Sn ⁴⁺) concentration) 1 mol dm ⁻³ AND 298 K (25 °C) | 1 | |-----------|---|---| | 3(a)(ii) | both half-cells have Pt or C electrode Sn²⁺/Sn⁴⁺ AND H⁺ solutions feasible gas delivery system H₂ label V/voltmeter AND correct circuit AND salt bridge touching solution salt bridge labelled | 3 | | 3(a)(iii) | no (reaction) AND both E° values (Sn ²⁺ /Sn) –0.14 and (C l_2 /C l^{-}) +1.36 [1] E_{cell} is –1.5 V/ E_{cell} is negative OR E° of Sn ⁴⁺ /Sn ²⁺ is more negative/smaller than E° of C l_2 /C l^{-} [1] | 2 | | 3(a)(iv) | $Sn^{2+} \rightarrow Sn^{4+}$ and $VO^{2+} \rightarrow V^{3+}$ [1]
$Sn^{2+} + 2VO^{2+} + 4H^{+} \rightarrow Sn^{4+} + 2V^{3+} + 2H_{2}O$ [1] | 2 | | 3(b) | moles of Sn = 2.95 / 118.7 = 0.0249 moles
moles of Al (is 2 / 3 moles of Sn) = 0.0166 moles [1]
mass of Al = 0.0166 × 27 = 0.447 / 0.448 g to 3sf [1] ecf | 2 | # **39.** 9701/42/O/N/22 Q3 | 3(a)(i) | the voltage produced by a half-cell compared with a standard hydrogen electrode [1] 1 mol dm ⁻³ , 298 K, 1 atm [1] | | |-----------|--|---| | 3(a)(ii) | Mg wire and Pt wire [1] voltmeter, salt bridge, complete circuit [1] solutes Mg ²⁺ and MnO ₄ ⁻ , Mn ²⁺ , H ⁺ [1] | 3 | | 3(a)(iii) | Mg is minus, Pt is plus arrow points towards MnO ₄ ⁻ /Mn ²⁺ half-cell | 1 | | 3(a)(iv) | 3.90 V | 1 | | 3(a)(v) | $5Mg + 2MnO_4^- + 16H^+ \rightarrow 5Mg^{2+} + 2Mn^{2+} + 8H_2O$ | 1 | | 3(a)(vi) | no change and dilution will make Mg ²⁺ /Mg potential even more negative | 1 | | 3(b) | either: $4.75 \times 10^{22} \times 2 \times 1.60 \times 10^{-19} = 15200\text{C}$ OR $2 \times 96500 \times (4.75 \times 10^{22})/6.02 \times 10^{23} = 15228\text{C}$ [1] | 2 | | | $15200/(15 \times 60) = 16.9 \text{ A OR}$
$15228/(15 \times 60) = 16.9 \text{ A [1]}$ | | ### **40.** 9701/41/M/J/22 Q2e | 2(e)(iii) MnO ₂ AND redox | 1 | | |---|---|--| ### **41.** 9701/41/M/J/22 Q3c | | I and the second | 1 | |-----------|--|---| | 3(c)(i) | voltage / EMF / potential difference when a half-cell is connected to a (standard) hydrogen electrode under standard conditions | 1 | | 3(c)(ii) | ions move (from the salt bridge) to maintain charge balance / complete the circuit | 1 | | 3(c)(iii) | Pt(s) 298K, 1 atm, 1 mol dm ⁻³ Pt, H ₂ (g), good delivery system, 298 K, 1 atm Pt, Cr ₂ O ₇ ² ·(aq), H*(aq) / Cr ³ *(aq), 1 mol dm ⁻³ seen once, voltmeter three for one mark, six for two marks, nine for three marks | 3 | | 3(c)(iv) | SHE labelled negative AND arrow in the external circuit moving away from this electrode | 1 | | 3(d)(i) | M1 $Cr_2O_7^{2-} + 3CH_3CHO + 8H^+ \rightleftharpoons 2Cr^{3+} + 3CH_3COOH + 4H_2O$
ALLOW $Cr_2O_7^{2-} + 3CH_3CHO + 5H^+ \rightleftharpoons 2Cr^{3+} + 3CH_3COO^- + 4H_2O$
M1 $E_{cell}^{\circ} = +2.27$ (V) | 2 | | 3(d)(ii) | M1 ΔG° = -nF E_{cell}°
M2 ΔG° = -4 × 96 500 × 2.01 = -775 860 J mol ⁻¹
ΔG° = -776 kJ mol ⁻¹ min 3sf | 2 | | | 1 | | # **42.** 9701/41/M/J/22 Q4c | L | | | | | |---|------|--|---|--| | | 4(c) | [Fe(CN) _e]³- AND equilibrium lies most to the left / lowest <i>E</i> ^e value | 1 | | | ſ | | | | | | | | | | | # **43.** 9701/42/M/J/22 Q5 | | | | | | ۰ | |--|---|--|------------------------------------|--|---| | 5(a) | electrolyte | substance liberated at the anode | substance liberated at the cathode | | | | | PbBr ₂ (I) | Br ₂ / bromine | Pb / lead | | | | | concentrated NaCl(aq) | Cl ₂ / chlorine | H ₂ / hydrogen | | | | | Cu(NO ₃) ₂ (aq) | O ₂ / oxygen (+ H ₂ O) | Cu/copper | | | | | two for one mark, four for | two marks, six for three | marks | | | | 5(b)(i) | F = Le OR F is directly proportional to L | | | | | | 5(b)(ii) | number of Cu^{2+} formed = $0.35/63.5 = 5.51 \times 10^{-3}$ | | | | | | $Q = I \times t = 0.60 \times 30 \times 60 = 1080 \text{ C}$ | | | | | | | | number of electrons = $1080 / 1.6 \times 10^{-19} = 6.75 \times 10^{21}$ ecf | | | | | | | number of Cu^{2+} ions = $6.75 \times 10^{21}/2 = 3.375 \times 10^{21}$ ecf | | | | | | | number of Cu ²⁺ ions per mole (L) = $3.375 \times 10^{21} / 5.51 \times 10^{-3} = 6.12 \times 10^{23}$ ecf min 2sf | | | | | | | all five points for four marks ALLOW valid alternate calculations of <i>L</i> | | | | | ### **44.** 9701/42/F/M/22 Q3c | Ī | 3(c)(i) | M1: $\Delta G = -nE\Theta_{cell}F$ AND n = 4 | 2 | |---|-----------|--|---| | | 3(0)(1) | $M2: \triangle E = \frac{112 \cdot C_{cell}}{112} 112 \cdot C$ | 3 | | | | M3: $E\Theta_{\text{cell}} = E\Theta(O_2, 4H^* H_2O) - E\Theta(TiO^{2*} Ti^{3*}) = 1.23 - E\Theta(TiO^{2*} Ti^{3*})$
$\therefore E\Theta(TiO^{2*} Ti^{3*}) = (+)$ 0.1 (V) ecf | | | | 3(c)(ii) | Ti ³⁺ empty / vacant d orbitals can form dative bonds / accept a lone pair from a ligand OR Ti ³⁺ has vacant d-orbitals which are energetically accessible | 1 | | | 3(c)(iii) | the $E\ominus$ of the half-cell must be greater than +1.23 V / $E\ominus$ of the $O_2 H^+$ half-cell as $E\ominus_{cell}<0$ and the reaction does not occur | 1 | | г | | | |